Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 687501, 8 pages
Research Article

Comparing the Electrochemical Performance of /C Modified by Mg Doping and MgO Coating

1Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
2State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

Received 19 March 2013; Accepted 2 May 2013

Academic Editor: Xinqing Chen

Copyright © 2013 Jianjun Song et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Supervalent cation doping and metal oxide coating are the most efficacious and popular methods to optimize the property of LiFePO4 lithium battery material. Mg-doped and MgO-coated LiFePO4/C were synthesized to analyze their individual influence on the electrochemical performance of active material. The specific capacity and rate capability of LiFePO4/C are improved by both MgO coating and Mg doping, especially the Mg-doped sample—Li0.985Mg0.015FePO4/C, whose discharge capacity is up to 163 mAh g−1, 145.5 mAh g−1, 128.3 mAh g−1, and 103.7 mAh g−1 at 1 C, 2 C, 5 C, and 10 C, respectively. The cyclic life of electrode is obviously increased by MgO surface modification, and the discharge capacity retention rate of sample LiFePO4/C-MgO2.5 is up to 104.2% after 100 cycles. Comparing samples modified by these two methods, Mg doping is more prominent on prompting the capacity and rate capability of LiFePO4, while MgO coating is superior in terms of improving cyclic performance.