Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 741036, 9 pages
http://dx.doi.org/10.1155/2013/741036
Research Article

Magnetic and Structural Studies of CoFe2O4 Nanoparticles Suspended in an Organic Liquid

1Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
2Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
3Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Serbia

Received 16 September 2013; Accepted 17 October 2013

Academic Editor: Haifeng Chen

Copyright © 2013 Branka Babić-Stojić et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Odenbach, “Magnetic fluids—suspensions of magnetic dipoles and their magnetic control,” Journal of Physics Condensed Matter, vol. 15, no. 15, pp. S1497–S1508, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Odenbach, “Recent progress in magnetic fluid research,” Journal of Physics Condensed Matter, vol. 16, no. 32, pp. R1135–R1150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Scherer and A. M. Figueiredo Neto, “Ferrofluids: properties and applications,” Brazilian Journal of Physics, vol. 35, no. 3, pp. 718–727, 2005. View at Google Scholar · View at Scopus
  4. C. C. Berry, “Progress in functionalization of magnetic nanoparticles for applications in biomedicine,” Journal of Physics D, vol. 42, no. 22, Article ID 224003, 9 pages, 2009. View at Publisher · View at Google Scholar
  5. H. Tan, J. M. Xue, B. Shuter, X. Li, and J. Wang, “Synthesis of PEOlated Fe3O4@SiO2 nanoparticles via bioinspired silification for magnetic resonance imaging,” Advanced Functional Materials, vol. 20, no. 5, pp. 722–731, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Rahisuddin, P. K. Sharma, M. Salim, and G. Garg, “Application of ferrofluid: as a targeted drug delivery system in nanotechnology,” International Journal of Pharmaceutical Sciences Review and Research, vol. 5, no. 3, pp. 115–119, 2010. View at Google Scholar · View at Scopus
  7. R. Skomski and J. M. D. Coey, Permanent Magetism, Institute of Physics Publishing, Bristol, UK, 1999.
  8. M. Walker, P. I. Mayo, K. O'Grady, S. W. Charles, and R. W. Chantrell, “The magnetic properties of single-domain particles with cubic anisotropy. I. Hysteresis loops,” Journal of Physics, vol. 5, no. 17, pp. 2779–2792, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Blums, A. Cebers, and M. M. Maiorov, Magnetic Fluids, Walter de Gruyter, Berlin, Germany, 1997.
  10. T. Jonsson, J. Mattsson, C. Djurberg, F. A. Khan, P. Nordblad, and P. Svedlindh, “Aging in a magnetic particle system,” Physical Review Letters, vol. 75, no. 22, pp. 4138–4141, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Zhang, C. Boyd, and W. Luo, “Two mechanisms and a scaling relation for dynamics in ferrofluids,” Physical Review Letters, vol. 77, no. 2, pp. 390–393, 1996. View at Google Scholar · View at Scopus
  12. A. Skumiel, A. Józefczak, T. Hornowski, and M. Labowski, “The influence of the concentration of ferroparticles in a ferrofluid on its magnetic and acoustic properties,” Journal of Physics D, vol. 36, no. 24, pp. 3120–3124, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Blanco-Mantecón and K. O'Grady, “Interaction and size effects in magnetic nanoparticles,” Journal of Magnetism and Magnetic Materials, vol. 296, no. 2, pp. 124–133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. L.-Y. Zhang, Y.-H. Dou, L. Zhang, and H.-C. Gu, “Magnetic behaviour and heating effect of Fe3O4 ferrofluids composed of monodisperse nanoparticles,” Chinese Physics Letters, vol. 24, no. 2, pp. 483–486, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. B. Morales, M. H. Phan, S. Pal, N. A. Frey, and H. Srikanth, “Particle blocking and carrier fluid freezing effects on the magnetic properties of Fe3O4 -based ferrofluids,” Journal of Applied Physics, vol. 105, no. 7, Article ID 07B511, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Baldi, D. Bonacchi, C. Innocenti, G. Lorenzi, and C. Sangregorio, “Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties,” Journal of Magnetism and Magnetic Materials, vol. 311, no. 1, pp. 10–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Baldi, D. Bonacchi, M. C. Franchini et al., “Synthesis and coating of cobalt ferrite nanoparticles: a first step toward the obtainment of new magnetic nanocarriers,” Langmuir, vol. 23, no. 7, pp. 4026–4028, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Baldi, G. Lorenzi, and C. Ravagli, “Hyperthermic effect of magnetic nanoparticles under electromagnetic field,” Processing and Applications of Ceramics, vol. 3, no. 1-2, pp. 103–109, 2009. View at Publisher · View at Google Scholar
  19. M. C. Franchini, G. Baldi, D. Bonacchi et al., “Bovine serum albumin-based magnetic nanocarrier for MRI diagnosis and hyperthermic therapy: a potential theranostic approach against cancer,” Small, vol. 6, no. 3, pp. 366–370, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Cabuil, V. Dupuis, D. Talbot, and S. Neveu, “Ionic magnetic fluid based on cobalt ferrite nanoparticles: influence of hydrothermal treatment on the nanoparticle size,” Journal of Magnetism and Magnetic Materials, vol. 323, no. 10, pp. 1238–1241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Guo, X. Yang, T. Xiao, W. Zhang, L. Lou, and J. Mugnier, “Structure and optical properties of sol-gel derived Gd2O3 waveguide films,” Applied Surface Science, vol. 230, no. 1–4, pp. 215–221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Shenker, “Magnetic anisotropy of cobalt ferrite (Co1.01Fe2.00O3.62) and nickel cobalt ferrite (Ni0.72Fe0.20Co0.08Fe2O4),” Physical Review, vol. 107, no. 5, pp. 1246–1249, 1957. View at Publisher · View at Google Scholar
  23. V. A. Brabers, “Progress in spinel ferrite research,” in Handbook of Magnetic Materials, K. H. J. Buschow, Ed., vol. 8, North-Holland, Amsterdam, The Netherlands, 1995. View at Google Scholar
  24. M. Grigorova, H. J. Blythe, V. Blaskov et al., “Magnetic properties and Mössbauer spectra of nanosized CoFe2O4 powders,” Journal of Magnetism and Magnetic Materials, vol. 183, no. 1-2, pp. 163–172, 1998. View at Google Scholar · View at Scopus
  25. V. Blaskov, V. Petkov, V. Rusanov et al., “Magnetic properties of nanophase CoFe2O4 particles,” Journal of Magnetism and Magnetic Materials, vol. 162, no. 2-3, pp. 331–337, 1996. View at Google Scholar · View at Scopus
  26. N. Moumen, P. Veillet, and M. P. Pileni, “Controlled preparation of nanosize cobalt ferrite magnetic particles,” Journal of Magnetism and Magnetic Materials, vol. 149, no. 1-2, pp. 67–71, 1995. View at Google Scholar · View at Scopus
  27. E. Manova, B. Kunev, D. Paneva et al., “Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4,” Chemistry of Materials, vol. 16, no. 26, pp. 5689–5696, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Néel, “Thermoremanent magnetization of fine powders,” Review of Modern Physics, vol. 25, no. 1, pp. 293–295, 1953. View at Publisher · View at Google Scholar
  29. N. Menon and S. R. Nagel, “Evidence for a divergent susceptibility at the glass transition,” Physical Review Letters, vol. 74, no. 7, pp. 1230–1233, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. G. A. Sawatzky, F. van der Woude, and A. H. Morrish, “Mössbauer study of several ferrimagnetic spinels,” Physical Review, vol. 187, no. 2, pp. 747–757, 1969. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Moume, P. Bonville, and M. P. Pileni, “Control of the size of cobalt ferrite magnetic fluids: Mössbauer spectroscopy,” Journal of Physical Chemistry, vol. 100, no. 34, pp. 14410–14416, 1996. View at Google Scholar · View at Scopus
  32. A. Hutlova, D. Niznansky, J.-L. Rehspringer, C. Estournès, and M. Kurmoo, “High coercive field for nanoparticles of CoFe2O4 in amorphous silica sol-gel,” Advanced Materials, vol. 15, no. 19, pp. 1622–1625, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. S. R. Ahmed, S. B. Ogale, G. C. Papaefthymiou, R. Ramesh, and P. Kofinas, “Magnetic properties of CoFe2O4 nanoparticles synthesized through a block copolymer nanoreactor route,” Applied Physics Letters, vol. 80, no. 9, pp. 1616–1618, 2002. View at Publisher · View at Google Scholar · View at Scopus