Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 752973, 17 pages
http://dx.doi.org/10.1155/2013/752973
Review Article

Recent Advances in Understanding Magnetic Nanoparticles in AC Magnetic Fields and Optimal Design for Targeted Hyperthermia

National Institute for Materials Science, Tsukuba 305-0047, Japan

Received 19 April 2013; Accepted 17 June 2013

Academic Editor: Oleg Petracic

Copyright © 2013 Hiroaki Mamiya. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. C. Dewey, L. E. Hopwood, S. A. Sapareto, and L. E. Gerweck, “Cellular responses to combinations of hyperthermia and radiation,” Radiology, vol. 123, no. 2, pp. 463–474, 1977. View at Google Scholar · View at Scopus
  2. S. Mornet, S. Vasseur, F. Grasset, and E. Duguet, “Magnetic nanoparticle design for medical diagnosis and therapy,” Journal of Materials Chemistry, vol. 14, no. 14, pp. 2161–2175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Tartaj, M. Del Puerto Morales, S. Veintemillas-Verdaguer, T. González-Carreño, and C. J. Serna, “The preparation of magnetic nanoparticles for applications in biomedicine,” Journal of Physics D, vol. 36, no. 13, pp. R182–R197, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, and B. von Rechenberg, “Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system,” Journal of Magnetism and Magnetic Materials, vol. 293, no. 1, pp. 483–496, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. Q. A. Pankhurst, N. K. T. Thanh, S. K. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” Journal of Physics D, vol. 42, no. 22, Article ID 224001, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. K. M. Krishnan, “Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy,” IEEE Transactions on Magnetics, vol. 46, no. 7, pp. 2523–2558, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Jeyadevan, “Present status and prospects of magnetite nanoparticles-based hyperthermia,” Journal of the Ceramic Society of Japan, vol. 118, no. 1378, pp. 391–401, 2010. View at Google Scholar · View at Scopus
  8. I. Sharifi, H. Shokrollahi, and S. Amiri, “Ferrite-based magnetic nanofluids used in hyperthermia applications,” Journal of Magnetism and Magnetic Materials, vol. 324, no. 6, pp. 903–915, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. S. J. DeNardo, G. L. DeNardo, A. Natarajan et al., “Thermal dosimetry predictive of efficacy of111In-ChL6 nanoparticle AMF-induced thermoablative therapy for human breast cancer in mice,” Journal of Nuclear Medicine, vol. 48, no. 3, pp. 437–444, 2007. View at Google Scholar · View at Scopus
  10. P. Wust, U. Gneveckow, M. Johannsen et al., “Magnetic nanoparticles for interstitial thermotherapy—feasibility, tolerance and achieved temperatures,” International Journal of Hyperthermia, vol. 22, no. 8, pp. 673–685, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Hergt, R. Hiergeist, I. Hilger et al., “Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 270, no. 3, pp. 345–357, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang, and N. Gu, “Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field,” Journal of Magnetism and Magnetic Materials, vol. 268, no. 1-2, pp. 33–39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. T. N. Brusentsova, N. A. Brusentsov, V. D. Kuznetsov, and V. N. Nikiforov, “Synthesis and investigation of magnetic properties of Gd-substituted Mn-Zn ferrite nanoparticles as a potential low-TC agent for magnetic fluid hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 293, no. 1, pp. 298–302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Glöckl, R. Hergt, M. Zeisberger, S. Dutz, S. Nagel, and W. Weitschies, “The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia,” Journal of Physics, vol. 18, no. 38, pp. S2935–S2949, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J.-C. Bacri, and F. Gazeau, “Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia,” Journal of the American Chemical Society, vol. 129, no. 9, pp. 2628–2635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Baldi, D. Bonacchi, C. Innocenti, G. Lorenzi, and C. Sangregorio, “Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties,” Journal of Magnetism and Magnetic Materials, vol. 311, no. 1, pp. 10–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Y. Zhang, H.-C. Gu, and X.-M. Wang, “Magnetite ferrofluid with high specific absorption rate for application in hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 311, no. 1, pp. 228–233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. D.-H. Kim, D. E. Nikles, D. T. Johnson, and C. S. Brazel, “Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 19, pp. 2390–2396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J.-P. Fortin, F. Gazeau, and C. Wilhelm, “Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles,” European Biophysics Journal, vol. 37, no. 2, pp. 223–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. L.-M. Lacroix, R. B. Malaki, J. Carrey et al., “Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: evidences for Stoner-Wohlfarth behavior and large losses,” Journal of Applied Physics, vol. 105, no. 2, Article ID 023911, 4 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. L. Dennis, A. J. Jackson, J. A. Borchers et al., “Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia,” Nanotechnology, vol. 20, no. 39, Article ID 395103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Gonzales-Weimuller, M. Zeisberger, and K. M. Krishnan, “Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 13, pp. 1947–1950, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Sharma and C. J. Chen, “Newer nanoparticles in hyperthermia treatment and thermometry,” Journal of Nanoparticle Research, vol. 11, no. 3, pp. 671–689, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Kita, T. Oda, T. Kayano et al., “Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy,” Journal of Physics D, vol. 43, no. 47, Article ID 474011, 2010. View at Publisher · View at Google Scholar
  25. B. Mehdaoui, A. Meffre, L.-M. Lacroix et al., “Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes,” Journal of Magnetism and Magnetic Materials, vol. 322, no. 19, pp. L49–L52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Kikuchi, R. Kasuya, S. Endo et al., “Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 323, no. 10, pp. 1216–1222, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. J.-H. Lee, J.-T. Jang, J.-S. Choi et al., “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nature Nanotechnology, vol. 6, no. 7, pp. 418–422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. S.-H. Noh, W. Na, J. Jang et al., “Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis,” Nano Letters, vol. 12, no. 7, pp. 3716–3721, 2012. View at Publisher · View at Google Scholar
  29. K. Nakamura, K. Ueda, A. Tomitaka et al., “Self-heating temperature and AC hysteresis of magnetic iron oxide nanoparticles and their dependence on secondary particle size,” IEEE Transactions on Magnetics, vol. 49, no. 1, pp. 240–243, 2013. View at Publisher · View at Google Scholar
  30. C. Martinez-Boubeta, K. Simeonidis, A. Makridis et al., “Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications,” Scientific Reports, vol. 3, article 1652, 2013. View at Publisher · View at Google Scholar
  31. J. L. Dormann, D. Fiorani, and E. Tronc, “Magnetic relaxation in fine-particle systems,” Advances in Chemical Physics, vol. 98, pp. 283–494, 1997. View at Google Scholar · View at Scopus
  32. X. Batlle and A. Labarta, “Finite-size effects in fine particles: magnetic and transport properties,” Journal of Physics D, vol. 35, no. 6, pp. R15–R42, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Mamiya, Magnetic Properties of Nanoparticles, Yushodo, Tokyo, Japan, 2003.
  34. P. E. Jönsson, “Superparamagnetism and spin glass dynamics of interacting magnetic nanoparticle systems,” Advances in Chemical Physics, vol. 128, pp. 191–248, 2004. View at Google Scholar
  35. P. C. Scholten, “How magnetic can a magnetic fluid be?” Journal of Magnetism and Magnetic Materials, vol. 39, no. 1-2, pp. 99–106, 1983. View at Publisher · View at Google Scholar
  36. H. Mamiya, I. Nakatani, and T. Furubayashi, “Blocking and freezing of magnetic moments for iron nitride fine particle systems,” Physical Review Letters, vol. 80, no. 1, pp. 177–180, 1998. View at Google Scholar · View at Scopus
  37. H. Mamiya, I. Nakatani, and T. Furubayashi, “Slow dynamics for spin-glass-like phase of a ferromagnetic fine particle system,” Physical Review Letters, vol. 82, no. 21, pp. 4332–4335, 1999. View at Google Scholar · View at Scopus
  38. H. Mamiya, I. Nakatani, and T. Furubayashi, “Phase transitions of iron-nitride magnetic fluids,” Physical Review Letters, vol. 84, no. 26, pp. 6106–6109, 2000. View at Google Scholar · View at Scopus
  39. A. Wiedenmann, M. Kammel, A. Heinemann, and U. Keiderling, “Nanostructures and ordering phenomena in ferrofluids investigated using polarized small angle neutron scattering,” Journal of Physics, vol. 18, no. 38, pp. S2713–S2736, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Kronmüller and M. Fähnle, Micromagnetism and the Microstructure of Ferromagnetic Solids, Cambridge University Press, Cambridge, UK, 2003.
  41. R. Hergt, S. Dutz, and M. Röder, “Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia,” Journal of Physics, vol. 20, no. 38, Article ID 385214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. R. E. Rosensweig, “Heating magnetic fluid with alternating magnetic field,” Journal of Magnetism and Magnetic Materials, vol. 252, pp. 370–374, 2002. View at Publisher · View at Google Scholar
  43. S. S. Papell, US Patent No. 3, 215, 1965.
  44. T. Sato, S. Higuchi, and J. Shimoiizaka, in Proceedings of the 19th Annual Meeting of the Chemical Society of Japan, 293, 1966.
  45. I. Nakatani, M. Hijikata, and K. Ozawa, “Iron-nitride magnetic fluids prepared by vapor-liquid reaction and their magnetic properties,” Journal of Magnetism and Magnetic Materials, vol. 122, no. 1–3, pp. 10–14, 1993. View at Google Scholar · View at Scopus
  46. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, “Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices,” Science, vol. 287, no. 5460, pp. 1989–1992, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. X.-M. Lin and A. C. S. Samia, “Synthesis, assembly and physical properties of magnetic nanoparticles,” Journal of Magnetism and Magnetic Materials, vol. 305, no. 1, pp. 100–109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angewandte Chemie, vol. 46, no. 8, pp. 1222–1244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Li, Y. Yang, J. Ding, and J. Xue, “Synthesis of magnetite nanooctahedra and their magnetic field-induced two-/three-dimensional superstructure,” Chemistry of Materials, vol. 22, no. 10, pp. 3183–3191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. J. L. C. Huaman, S. Fukao, K. Shinoda, and B. Jeyadevan, “Novel standing Ni-Pt alloy nanocubes,” CrystEngComm, vol. 13, no. 10, pp. 3364–3369, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Li, Q. Zhang, A. V. Nurmikko, and S. Sun, “Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs,” Nano Letters, vol. 5, no. 9, pp. 1689–1692, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. The International Commission on Non-Ionizing Radiation Protection, “Guide-lines for limiting exposure to time-varying electric, magnetic, and electro-magnetic fields (up to 300 GHz),” Health Physics, vol. 74, no. 4, pp. 494–522, 1998. View at Google Scholar
  53. E. Lima Jr., E. de Biasi, and M. V. Mansilla, “Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field,” Journal of Physics D, vol. 46, no. 4, Article ID 045002, 2013. View at Google Scholar
  54. S. M. Morgan and R. H. Victora, “Use of square waves incident on magnetic nanoparticles to induce magnetic hyperthermia for therapeutic cancer treatment,” Applied Physics Letters, vol. 97, no. 9, Article ID 093705, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. E. L. Verde, G. T. Landi, and M. S. Carriao, “Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes,” AIP Advances, vol. 2, no. 3, Article ID 032120, 23 pages, 2012. View at Google Scholar
  56. G. T. Landi and A. F. Bakuzis, “On the energy conversion efficiency in magnetic hyperthermia applications: a new perspective to analyze the departure from the linear regime,” Journal of Applied Physics, vol. 111, no. 8, Article ID 083915, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. N. A. Usov, S. A. Gudoshnikov, and O. N. Serebryakova, “Properties of dense assemblies of magnetic nanoparticles promising for application in biomedicine,” Journal of Superconductivity and Novel Magnetism, vol. 26, no. 4, pp. 1079–1083, 2013. View at Google Scholar
  58. J. Carrey, B. Mehdaoui, and M. Respaud, “Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization,” Journal of Applied Physics, vol. 109, no. 8, Article ID 083921, 17 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. Z. P. Mendoza, G. A. Pasquevich, and S. J. Stewart, “Structural and magnetic study of zinc-doped magnetite nanoparticles and ferrofluids for hyperthermia applications,” Journal of Physics D, vol. 46, no. 12, Article ID 125006, 2013. View at Google Scholar
  60. W. F. Brown Jr., “Thermal fluctuations of a single-domain particle,” Physical Review, vol. 130, no. 5, pp. 1677–1686, 1963. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Mamiya and B. Jeyadevan, “Optimal design of nanomagnets for targeted hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 323, no. 10, pp. 1417–1422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. D. B. Reeves and J. B. Weaver, “Simulations of magnetic nanoparticle Brownian motion,” Journal of Applied Physics, vol. 112, no. 12, Article ID 124311, 6 pages, 2012. View at Publisher · View at Google Scholar
  63. T. Yoshida and K. Enpuku, “Simulation and quantitative clarification of AC susceptibility of magnetic fluid in nonlinear Brownian relaxation region,” Japanese Journal of Applied Physics, vol. 48, Article ID 127002, 7 pages, 2009. View at Publisher · View at Google Scholar
  64. H. Mamiya and B. Jeyadevan, “Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields,” Scientific Reports, vol. 1, article 157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. N. A. Usov and B. Ya. Liubimov, “Dynamics of magnetic nanoparticle in a viscous liquid: application to magnetic nanoparticle hyperthermia,” Journal of Applied Physics, vol. 112, no. 2, Article ID 023901, 11 pages, 2012. View at Publisher · View at Google Scholar
  66. H. Mamiya and B. Jeyadevan, “Formation of non-equilibrium magnetic nanoparticle structures in a large alternating magnetic field and their influence on magnetic hyperthermia treatment,” IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 3258–3262, 2012. View at Publisher · View at Google Scholar
  67. H. Mamiya and B. Jeyadevan, “Magnetic hysteresis loop in a superparamagnetic state,” in press. IEEE Transactions on Magnetics.
  68. W. Andrä, C. G. D'Ambly, R. Hergt, I. Hilger, and W. A. Kaiser, “Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 194, no. 1, pp. 197–203, 1999. View at Publisher · View at Google Scholar · View at Scopus
  69. C. W. Song, “Effect of local hyperthermia on blood flow and microenvironment: a review,” Cancer Research, vol. 44, no. 10, supplement, pp. 4721s–4730s, 1984. View at Google Scholar · View at Scopus
  70. T. Hasegawa, R. Kudaka, K. Saito et al., Bulletin of Suzuka University of Medical Science, vol. 11, pp. 58–64, 2004.
  71. J. Bohnert and O. Dössel, “Simulations of temperature increase due to time varying magnetic fields up to 100 kHz,” in Proceedings of the 5th European Conference of the International Federation for Medical and Biological Engineering, vol. 37 of IFMBE Proceedings, pp. 303–306, 2012.
  72. H. Mamiya, “Magnetic response of nanoparticles to AC magnetic fields and targeted thermotherapy,” Materials Integration, vol. 25, pp. 11–23, 2012. View at Google Scholar
  73. T. Kobayashi, “Cancer hyperthermia using magnetic nanoparticles,” Biotechnology Journal, vol. 6, no. 11, pp. 1342–1347, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. B. Thiesen and A. Jordan, “Clinical applications of magnetic nanoparticles for hyperthermia,” International Journal of Hyperthermia, vol. 24, no. 6, pp. 467–474, 2008. View at Publisher · View at Google Scholar · View at Scopus