Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 784927, 7 pages
http://dx.doi.org/10.1155/2013/784927
Research Article

Fabrication of Orderly Copper Particle Arrays on a Multi-Electrolyte-Step Anodic Aluminum Oxide Template

1Department of Optics and Photonics, National Central University, 300 Chung-Da Road, Chung-Li 32001, Taiwan
2Department of Chemical and Materials Engineering, Lee-Ming Institute of Technology, Lizhuan Road, New Taipei City 24305, Taiwan

Received 4 September 2013; Revised 4 November 2013; Accepted 6 November 2013

Academic Editor: Guangyu Zhao

Copyright © 2013 Chun-Ko Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nature Materials, vol. 10, no. 12, pp. 911–921, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. F. Sanchez-Ramírez, “Preparation and optical absorption of colloidal dispersion of Au/Cu nanoparticles,” Superficies Y Vacio, vol. 15, pp. 16–18, 2002. View at Google Scholar
  3. B. Ding, B. J. Lee, M. Yang, H. S. Jung, and J. K. Lee, “Surface-Plasmon Assisted Energy Conversion in Dye-Sensitized Solar Cells,” Advanced Energy Materials, vol. 1, no. 3, pp. 415–421, 2011. View at Google Scholar
  4. R.-L. Zong, J. Zhou, B. Li, M. Fu, S.-K. Shi, and L.-T. Li, “Optical properties of transparent copper nanorod and nanowire arrays embedded in anodic alumina oxide,” Journal of Chemical Physics, vol. 123, no. 9, Article ID 094710, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Zhang, W. Xu, S. Xu, G. Fei, Y. Xiao, and J. Hu, “Optical properties of Ni and Cu nanowire arrays and Ni/Cu superlattice nanowire arrays,” Nanoscale Research Letters, vol. 7, no. 1, p. 569, 2012. View at Google Scholar
  6. C.-K. Chung, T. Y. Liu, and W. T. Chang, “Effect of oxalic acid concentration on the formation of anodic aluminum oxide using pulse anodization at room temperature,” Microsystem Technologies, vol. 16, no. 8-9, pp. 1451–1456, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Y. Han, G. A. Willing, Z. Xiao, and H. H. Wang, “Control of the anodic aluminum oxide barrier layer opening process by wet chemical etching,” Langmuir, vol. 23, no. 3, pp. 1564–1568, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Jia, H. Zhou, P. Luo, S. Luo, J. Chen, and Y. Kuang, “Preparation and characteristics of well-aligned macroporous films on aluminum by high voltage anodization in mixed acid,” Surface and Coatings Technology, vol. 201, no. 3-4, pp. 513–518, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Shingubara, K. Morimoto, H. Sakaue, and T. Takahagi, “Self-organization of a porous alumina nanohole array using a sulfuric/oxalic acid mixture as electrolyte,” Electrochemical and Solid-State Letters, vol. 7, no. 3, pp. E15–E17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Applied Physics Letters, vol. 78, no. 1, pp. 120–122, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Shingubara, Y. Murakami, K. Morimoto, and T. Takahagi, “Formation of aluminum nanodot array by combination of nanoindentation and anodic oxidation of aluminum,” Surface Science, vol. 532–535, pp. 317–323, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. H. Chan, C. K. Chen, S. Z. Tseng, C. H. Hsu, and W. H. Cho, “Atomic layer deposition of aluminum-doped zinc oxide films for the light harvesting enhancement of a nanostructured silicon solar cell,” The Journal of Vacuum Science and Technology A, vol. 31, no. 1, pp. 01A125–01A128, 2013. View at Google Scholar
  13. C. K. Chen, Y. C. Huang, C. C. Lee, and S. H. Chen, “Omni-directional reflectors for UV LED using symmetric autocloning method,” Optical Review, vol. 20, no. 2, pp. 141–144, 2013. View at Google Scholar
  14. I. Cavarretta, C. O'Sullivan, and M. R. Coop, “Applying 2D shape analysis techniques to granular materials with 3D particle geometries,” in Proceedings of the 6th International Conference on Micromechanics of Granular Media, Powders and Grains 2009, pp. 833–836, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. P. Z. Stevenson, D. B. Bea, S. Civit, S. A. Contera, A. I. Cerveto, and S. Trigueros, “Three strategies to stabilise nearly monodispersed silver nanoparticles in aqueous solution,” Nanoscale Research Letters, vol. 7, pp. 151–158, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Sanz, F. J. Echave, J. A. Odriozola, and M. Montes, “Aluminum anodization in oxalic acid: controlling the texture of Al2O3/Al monoliths for catalytic aplications,” Industrial and Engineering Chemistry Research, vol. 50, no. 4, pp. 2117–2125, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, and W. Z. Misiolek, “Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes,” Journal of Membrane Science, vol. 319, no. 1-2, pp. 192–198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Ersching, E. Dorico, R. C. da Silva et al., “Surface and interface characterization of nanoporous alumina templates produced in oxalic acid and submitted to etching procedures,” Materials Chemistry and Physics, vol. 137, pp. 140–146, 2012. View at Google Scholar
  19. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina,” Advanced Materials, vol. 11, no. 6, pp. 483–487, 1999. View at Google Scholar
  20. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Applied Physics Letters, vol. 71, no. 19, pp. 10–12, 1997. View at Google Scholar
  21. A. P. Li, F. Müller, and U. Gösele, “Polycrystalline and monocrystalline pore arrays with large interpore distance in anodic alumina,” Electrochemical and Solid-State Letters, vol. 3, no. 3, pp. 131–134, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Yu, Y. Gao, and H. Li, “Fabrication and optical characterization of poly(2,5-di-n-butoxyphenylene) nanofibril arrays,” Journal of Applied Polymer Science, vol. 91, no. 1, pp. 425–430, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. K.-L. Lai, M.-H. Hon, and I.-C. Leu, “Fabrication of ordered nanoporous anodic alumina prepatterned by mold-assisted chemical etching,” Nanoscale Research Letters, vol. 6, pp. 157–162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Nourmohammadi, S. J. Asadabadi, M. H. Yousefi, and M. Ghasemzadeh, “Photoluminescence mission of nanoporous anodic aluminum oxide films prepared in phosphoric acid,” Nanoscale Research Letters, vol. 7, pp. 689–695, 2012. View at Google Scholar
  25. C.-G. Kuo and C.-C. Chen, “Technique for self-assembly of tin nano-particles on anodic aluminum oxide (AAO) templates,” Materials Transactions, vol. 50, no. 5, pp. 1102–1104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Chen, J.-S. Wu, and X.-H. Xia, “Porous anodic alumina with continuously manipulated pore/cell size,” ACS Nano, vol. 2, no. 5, pp. 959–965, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Zaraska, G. D. Sulka, and M. Jaskua, “Properties of nanostructures obtained by anodization of aluminum in phosphoric acid at moderate potentials,” Journal of Physics: Conference Series, vol. 146, Article ID 012020, pp. 012020–012026, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. V. P. Parkhutik and V. I. Shershulsky, “Theoretical modelling of porous oxide growth on aluminum,” Journal of Physics D, vol. 25, pp. 1258–1263, 1992. View at Google Scholar
  29. J. E. Houser and K. R. Hebert, “Modeling the potential distribution in porous anodic alumina films during steady-state growth,” Journal of the Electrochemical Society, vol. 153, no. 12, Article ID 078612JES, pp. B566–B573, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Chen, D. S. Chan, C. K. Chen, T. H. Chang, Y. H. Lai, and C. C. Lee, “Nanoimprinting pre-patterned effects on anodic aluminum oxide,” Japanese Journal of Applied Physics, vol. 49, no. 1, pp. 015201–015204, 2010. View at Google Scholar