Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 825285, 7 pages
http://dx.doi.org/10.1155/2013/825285
Research Article

Precise Alignment of Individual Single-Walled Carbon Nanotube Using Dielectrophoresis Method for Development and Fabrication of pH Sensor

Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia

Received 6 August 2013; Accepted 10 October 2013

Academic Editor: Chunyi Zhi

Copyright © 2013 U. Hashim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Sinha, J. Ma, and J. T. W. Yeow, “Carbon nanotube-based sensors,” Journal of Nanoscience and Nanotechnology, vol. 6, no. 3, pp. 573–590, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56–58, 1991. View at Google Scholar · View at Scopus
  3. S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603–605, 1993. View at Google Scholar · View at Scopus
  4. H. Li, Q. Zhang, and J. Li, “Carbon-nanotube-based single-electron/hole transistors,” Applied Physics Letters, vol. 88, no. 1, Article ID 013508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Javey, J. Guo, D. B. Farmer et al., “Carbon nanotube field-effect transistors with integrated ohmic contacts and high-κ gate dielectrics,” Nano Letters, vol. 4, no. 3, pp. 447–450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors,” Applied Physics Letters, vol. 73, no. 17, pp. 2447–2449, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris, “Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes,” Applied Physics Letters, vol. 80, no. 20, pp. 3817–3819, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, vol. 393, pp. 49–52, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Kong, N. R. Franklin, C. Zhou et al., “Nanotube molecular wires as chemical sensors,” Science, vol. 287, pp. 622–625, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes,” Science, vol. 287, pp. 1801–1804, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, “Nanotubes as nanoprobes in scanning probe microscopy,” Nature, vol. 384, pp. 147–150, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. E. S. Snow, P. M. Campbell, and J. P. Novak, “Single-wall carbon nanotube atomic force microscope probes,” Applied Physics Letters, vol. 80, no. 11, pp. 2002–2004, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. J. H. Hafner, C. L. Cheung, and C. M. Lieber, “Growth of nanotubes for probe microscopy tips,” Nature, vol. 398, pp. 761–762, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Ulmen, V. K. Kayastha, A. Deconinck, J. Wang, and Y. K. Yap, “Stability of field emission current from various types of carbon nanotube films,” Diamond and Related Materials, vol. 15, no. 2-3, pp. 212–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Pandey, A. Prasad, J. Moscatello, B. Ulmen, and Y. K. Yap, “Enhanced field emission stability and density produced by conical bundles of catalyst-free carbon nanotubes,” Carbon, vol. 48, no. 1, pp. 287–292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Ding, Z. Chen, S. Rajaputra, and V. Singh, “Hydrogen sensors based on aligned carbon nanotubes in an anodic aluminum oxide template with palladium as a top electrode,” Sensors and Actuators B, vol. 124, no. 1, pp. 12–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. M. Fennimore, T. D. Yuzvinsky, W.-Q. Han, M. S. Fuhrer, J. Cumings, and A. Zetti, “Rotational actuators based on carbon nanotubes,” Nature, vol. 424, pp. 408–410, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. R. H. Baughman, C. Cui, A. A. Zakhidov et al., “Carbon nanotube actuators,” Science, vol. 284, pp. 1340–1344, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. A. R. Hall, M. R. Falvo, R. Superfine, and S. Washburn, “A self-sensing nanomechanical resonator built on a single-walled carbon nanotube,” Nano Letters, vol. 8, no. 11, pp. 3746–3749, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, “Logic circuits with carbon nanotube transistors,” Science, vol. 294, pp. 1317–1320, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Javey, M. Shim, and H. Dai, “Electrical properties and devices of large-diameter single-walled carbon nanotubes,” Applied Physics Letters, vol. 80, no. 6, pp. 1064–1066, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Liu, C. Lee, C. Zhou, and J. Han, “Carbon nanotube field-effect inverters,” Applied Physics Letters, vol. 79, no. 20, pp. 3329–3331, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. B. S. Oh, Y.-S. Min, E. J. Bae et al., “Fabrication of suspended single-walled carbon nanotubes via a direct lithographic route,” Journal of Materials Chemistry, vol. 16, no. 2, pp. 174–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Fukuda, F. Arai, and L. Dong, “Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations,” Proceedings of the IEEE, vol. 91, no. 11, pp. 1803–1818, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Dimaki and P. Bøggild, “Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study,” Nanotechnology, vol. 15, no. 8, pp. 1095–1102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Raychaudhuri, S. A. Dayeh, D. Wang, and E. T. Yu, “Precise semiconductor nanowire placement through dielectrophoresis,” Nano Letters, vol. 9, no. 6, pp. 2260–2266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Takeda, M. Nakamura, A. Ishii et al., “A pH sensor based on electric properties of nanotubes on a glass substrate,” Nanoscale Research Letters, vol. 2, no. 4, pp. 207–212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Lee and T. Cui, “PH -dependent conductance behaviors of layer-by-layer self-assembled carboxylated carbon nanotube multilayer thin-film sensors,” Journal of Vacuum Science and Technology B, vol. 27, no. 2, pp. 842–848, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. G. M. Barrow, “The nature of hydrogen bonded ion-pairs: the reaction of pyridine and carboxylic acids in chloroform,” The Journal of the American Chemical Society, vol. 78, no. 22, pp. 5802–5806, 1956. View at Google Scholar · View at Scopus