Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 831873, 11 pages
http://dx.doi.org/10.1155/2013/831873
Research Article

In Vivo Study of Ligament-Bone Healing after Anterior Cruciate Ligament Reconstruction Using Autologous Tendons with Mesenchymal Stem Cells Affinity Peptide Conjugated Electrospun Nanofibrous Scaffold

1Department of Biochemistry and Molecular Biology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Haidian District, Beijing 100191, China
2Institute of Sports Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
3Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China

Received 22 July 2013; Revised 23 September 2013; Accepted 2 October 2013

Academic Editor: Patricia Murray

Copyright © 2013 Jingxian Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Stevens and J. H. George, “Exploring and engineering the cell surface interface,” Science, vol. 310, no. 5751, pp. 1135–1138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Z. Zhang, B. Su, J. Venugopal, S. Ramakrishna, and C. T. Lim, “Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers,” International Journal of Nanomedicine, vol. 2, no. 4, pp. 623–638, 2007. View at Google Scholar
  3. C. K. Kuo, J. E. Marturano, and R. S. Tuan, “Novel strategies in tendon and ligament tissue engineering: advanced biomaterials and regeneration motifs,” Sports Medicine, Arthroscopy, Rehabilitation, Therapy and Technology, vol. 2, article 20, 2010. View at Google Scholar
  4. S. Sahoo, J. G. Cho-Hong, and T. Siew-Lok, “Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering,” Biomedical Materials, vol. 2, no. 3, article 001, pp. 169–173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. K. R. Reinhardt, I. Hetsroni, and R. G. Marx, “Graft selection for anterior cruciate ligament reconstruction: a level I systematic review comparing failure rates and functional outcomes,” Orthopedic Clinics of North America, vol. 41, no. 2, pp. 249–262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. F. A. Petrigliano, D. R. McAllister, and B. M. Wu, “Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies,” Arthroscopy, vol. 22, no. 4, pp. 441–451, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. E. M. Horwitz, K. Le Blanc, M. Dominici et al., “Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement,” Cytotherapy, vol. 7, no. 5, pp. 393–395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. A. I. Caplan and D. Correa, “The MSC: an injury drugstore,” Cell Stem Cell, vol. 9, no. 1, pp. 11–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Karp and G. S. Leng Teo, “Mesenchymal stem cell homing: the devil is in the details,” Cell Stem Cell, vol. 4, no. 3, pp. 206–216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Shao, X. Zhang, Y. Pi et al., “Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo,” Biomaterials, vol. 33, no. 12, pp. 3375–3387, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Buschmann, L. Harter, S. Gao et al., “Tissue engineered bone grafts based on biomimetic nanocomposite PLGA/amorphous calcium phosphate scaffold and human adipose-derived stem cells,” Injury, vol. 43, no. 10, pp. 1689–1697, 2012. View at Google Scholar
  13. N. Hild, O. D. Schneider, D. Mohn et al., “Two-layer membranes of calcium phosphate/collagen/PLGA nanofibres: in vitro biomineralisation and osteogenic differentiation of human mesenchymal stem cells,” Nanoscale, vol. 3, no. 2, pp. 401–409, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. D. Schofer, P. P. Roessler, J. Schaefer et al., “Electrospun plla nanofiber scaffolds and their use in combination with bmp-2 for reconstruction of bone defects,” PLoS ONE, vol. 6, no. 9, Article ID e25462, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. X. H. Zou, Y. L. Zhi, X. Chen et al., “Mesenchymal stem cell seeded knitted silk sling for the treatment of stress urinary incontinence,” Biomaterials, vol. 31, no. 18, pp. 4872–4879, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. Dalby, N. Gadegaard, R. Tare et al., “The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder,” Nature Materials, vol. 6, no. 12, pp. 997–1003, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Zhu, Q. Cai, X. Zhang et al., “Biological characteristics of mesenchymal stem cells grown on different topographical nanofibrous poly-L-lactide meshes,” Journal of Biomedical Nanotechnology, vol. 9, no. 10, pp. 1757–1767, 2013. View at Google Scholar
  18. Y. Pi, X. Zhang, J. Shi et al., “Targeted delivery of non-viral vectors to cartilage in vivo using a chondrocyte-homing peptide identified by phage display,” Biomaterials, vol. 32, no. 26, pp. 6324–6332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. C. B. Ma, S. Kawamura, X.-H. Deng et al., “Bone morphogenetic proteins-signaling plays a role in tendon-to-bone healing: a study of rhBMP-2 and noggin,” The American Journal of Sports Medicine, vol. 35, no. 4, pp. 597–604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. C. N. Manning, H. M. Kim, S. Sakiyama-Elbert, L. M. Galatz, N. Havlioglu, and S. Thomopoulos, “Sustained delivery of transforming growth factor beta three enhances tendon-to-bone healing in a rat model,” Journal of Orthopaedic Research, vol. 29, no. 7, pp. 1099–1105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Huangfu and J. Zhao, “Tendon-bone healing enhancement using injectable tricalcium phosphate in a dog anterior cruciate ligament Reconstruction Model,” Arthroscopy, vol. 23, no. 5, pp. 455–462, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Bedi, D. Kovacevic, C. Hettrich et al., “The effect of matrix metalloproteinase inhibition on tendon-to-bone healing in a rotator cuff repair model,” Journal of Shoulder and Elbow Surgery, vol. 19, no. 3, pp. 384–391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. L. V. Gulotta, D. Kovacevic, J. D. Packer, X. H. Deng, and S. A. Rodeo, “Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model,” The American Journal of Sports Medicine, vol. 39, no. 6, pp. 1282–1289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. K. von der Mark, J. Park, S. Bauer, and P. Schmuki, “Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix,” Cell and Tissue Research, vol. 339, no. 1, pp. 131–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. T. K. H. Teh, S.-L. Toh, and J. C. H. Goh, “Aligned hybrid silk scaffold for enhanced differentiation of mesenchymal stem cells into ligament fibroblasts,” Tissue Engineering C, vol. 17, no. 6, pp. 687–703, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Yin, X. Chen, J. L. Chen et al., “The regulation of tendon stem cell differentiation by the alignment of nanofibers,” Biomaterials, vol. 31, no. 8, pp. 2163–2175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. B. M. Baker, A. S. Nathan, A. O. Gee, and R. L. Mauck, “The influence of an aligned nanofibrous topography on human mesenchymal stem cell fibrochondrogenesis,” Biomaterials, vol. 31, no. 24, pp. 6190–6200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Martins, M. L. Alves da Silva, S. Faria, A. P. Marques, R. L. Reis, and N. M. Neves, “The influence of patterned nanofiber meshes on human mesenchymal stem cell osteogenesis,” Macromolecular Bioscience, vol. 11, no. 7, pp. 978–987, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Robert, J. Es-Sayeh, D. Heymann, N. Passuti, S. Eloit, and E. Vaneenoge, “Hamstring insertion site healing after anterior cruciate ligament reconstruction in patients with symptomatic hardware or repeat rupture: a histologic study in 12 patients,” Arthroscopy, vol. 19, no. 9, pp. 948–954, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. D. L. Gushue, J. Houck, and A. L. Lerner, “Rabbit knee joint biomechanics: motion analysis and modeling of forces during hopping,” Journal of Orthopaedic Research, vol. 23, no. 4, pp. 735–742, 2005. View at Publisher · View at Google Scholar · View at Scopus