Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 836281, 9 pages
http://dx.doi.org/10.1155/2013/836281
Research Article

Chlorination of Carbon Nanotubes Obtained on the Different Metal Catalysts

1Institute of Chemical and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-310 Szczecin, Poland
2Institute of Organic Chemical Technology, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-310 Szczecin, Poland
3Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland

Received 10 October 2013; Accepted 29 November 2013

Academic Editor: Chunyi Zhi

Copyright © 2013 Iwona Pełech et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Paradise and T. Goswami, “Carbon nanotubes—production and industrial applications,” Materials and Design, vol. 28, no. 5, pp. 1477–1489, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. V. N. Popov, “Carbon nanotubes: properties and application,” Materials Science and Engineering, vol. 43, pp. 61–102, 2004. View at Google Scholar
  3. R. Oriňáková and A. Oriňák, “Recent applications of carbon nanotubes in hydrogen production and storage,” Fuel, vol. 90, no. 11, pp. 3123–3140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. C. Ray, C. W. Pao, H. M. Tsai et al., “Electronic structures and bonding properties of chlorine-treated nitrogenated carbon nanotubes: X-ray absorption and scanning photoelectron microscopy studies,” Applied Physics Letters, vol. 90, no. 19, Article ID 192107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. C. Ray, C. W. Pao, H. M. Tsai et al., “A comparative study of the electronic structures of oxygen- and chlorine-treated nitrogenated carbon nanotubes by x-ray absorption and scanning photoelectron microscopy,” Applied Physics Letters, vol. 91, no. 20, Article ID 202102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. C. Ray, U. Palnitkar, C. W. Pao et al., “Field emission effects of nitrogenated carbon nanotubes on chlorination and oxidation,” Journal of Applied Physics, vol. 104, no. 6, Article ID 063710, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Y. Kim, S.-I. Han, and S. H. Kim, “Crystallization behaviors and mechanical properties of polyethylene 2,6-naphthalate/multiwall carbon nanotube nanocomposites,” Polymer Engineering and Science, vol. 47, no. 11, pp. 1715–1723, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. H. Jin, Y.-B. Park, and K. H. Yoon, “Rheological and mechanical properties of surface modified multi-walled carbon nanotube-filled PET composite,” Composites Science and Technology, vol. 67, no. 15-16, pp. 3434–3441, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. B.-X. Yang, J.-H. Shi, K. P. Pramoda, and S. H. Goh, “Enhancement of stiffness, strength, ductility and toughness of poly(ethylene oxide) using phenoxy-grafted multiwalled carbon nanotubes,” Nanotechnology, vol. 18, no. 12, Article ID 125606, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Q. Pham, C. A. Mitchell, J. L. Bahr, J. M. Tour, K. Krishanamoorti, and P. F. Green, “Glass transition of polymer/single-walled carbon nanotube composite films,” Journal of Polymer Science B, vol. 41, no. 24, pp. 3339–3345, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. I. V. Singh, M. Tanaka, J. Zhang, and M. Endo, “Evaluation of effective thermal conductivity of CNT-based nano-composites by element free Galerkin method,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 17, no. 8, pp. 757–769, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Guo, T. V. Sreekumar, T. Liu, M. Minus, and S. Kumar, “Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films,” Polymer, vol. 46, no. 9, pp. 3001–3005, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. U. Dettlaff-Weglikowska, M. Kaempgen, B. Hornbostel et al., “Conducting and transparent SWNT/polymer composites,” Physica Status Solidi B, vol. 243, no. 13, pp. 3440–3444, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. B. R. Sankapal, K. Setyowati, J. Chen, and H. Liu, “Electrical properties of air-stable, iodine-doped carbon-nanotube-polymer composites,” Applied Physics Letters, vol. 91, no. 17, Article ID 173103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Ivanov, A. Fonseca, J. B. Nagy et al., “Catalytic production and purification of nanotubules having fullerene-scale diameters,” Carbon, vol. 33, no. 12, pp. 1727–1738, 1995. View at Google Scholar · View at Scopus
  16. T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, “Purification of nanotubes,” Nature, vol. 367, no. 6463, p. 519, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Peng and H. Liu, “Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes,” Industrial and Engineering Chemistry Research, vol. 45, no. 19, pp. 6483–6488, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Hernadi, A. Siska, L. Thiên-Nga, L. Forró, and I. Kiricsi, “Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes,” Solid State Ionics, vol. 141-142, pp. 203–209, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Stobinski, B. Lesiak, L. Kövér et al., “Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods,” Journal of Alloys and Compounds, vol. 501, no. 1, pp. 77–84, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S.-H. Su, W.-T. Chiang, C.-C. Lin, and M. Yokoyama, “Multi-wall carbon nanotubes: purification, morphology and field emission performance,” Physica E, vol. 40, no. 7, pp. 2322–2326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Avilés, J. V. Cauich-Rodríguez, L. Moo-Tah, A. May-Pat, and R. Vargas-Coronado, “Evaluation of mild acid oxidation treatments for MWCNT functionalization,” Carbon, vol. 47, no. 13, pp. 2970–2975, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. P. C. Ma, J.-K. Kim, and B. Z. Tang, “Functionalization of carbon nanotubes using a silane coupling agent,” Carbon, vol. 44, no. 15, pp. 3232–3238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Hamon, H. Hui, P. Bhowmik, H. M. E. Itkis, and R. C. Haddon, “Ester-functionalized soluble single-walled carbon nanotubes,” Applied Physics A, vol. 74, no. 3, pp. 333–338, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. J. J. Stephenson, A. K. Sadana, A. L. Higginbotham, and J. M. Tour, “Highly functionalized and soluble multiwalled carbon nanotubes by reductive alkylation and arylation: the billups reaction,” Chemistry of Materials, vol. 18, no. 19, pp. 4658–4661, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Osuna, M. Torrent-Sucarrat, M. Solà, P. Geerlings, C. P. Ewels, and G. van Lier, “Reaction mechanisms for graphene and carbon nanotube fluorination,” Journal of Physical Chemistry C, vol. 114, no. 8, pp. 3340–3345, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Qu, K. M. Lee, and L. Dai, Functionalization and Applications of Carbon Nanotubes, Carbon Nanotechnology, Elsevier, edited by L. Dai, 2006.
  27. R. Barthos, D. Méhn, A. Demortier et al., “Functionalization of single-walled carbon nanotubes by using alkyl-halides,” Carbon, vol. 43, no. 2, pp. 321–325, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. G. S. Duesberg, R. Graupner, P. Downes et al., “Hydrothermal functionalisation of single-walled carbon nanotubes,” Synthetic Metals, vol. 142, no. 1–3, pp. 263–266, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Applied Surface Science, vol. 181, no. 1-2, pp. 121–127, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Kónya, I. Vesselenyi, K. Niesz et al., “Large scale production of short functionalized carbon nanotubes,” Chemical Physics Letters, vol. 360, no. 5-6, pp. 429–435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. U. Narkiewicz, M. Podsiadły, R. Jȩdrzejewski, and I. Pełech, “Catalytic decomposition of hydrocarbons on cobalt, nickel and iron catalysts to obtain carbon nanomaterials,” Applied Catalysis A, vol. 384, no. 1-2, pp. 27–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Pełech, “Preparation of carbon nanotubes using CVD method,” Polish Journal of Chemical Technology, vol. 12, pp. 45–49, 2010. View at Google Scholar
  33. L. S. K. Pang, J. D. Saxby, and S. P. Chatfield, “Thermogravimetric analysis of carbon nanotubes and nanoparticles,” Journal of Physical Chemistry, vol. 97, no. 27, pp. 6941–6942, 1993. View at Google Scholar · View at Scopus
  34. Y. Hao, Z. Qunfeng, W. Fei, Q. Weizhong, and L. Guohua, “Agglomerated CNTs synthesized in a fluidized bed reactor: agglomerate structure and formation mechanism,” Carbon, vol. 41, no. 14, pp. 2855–2863, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. Y.-Y. Fan, A. Kaufmann, A. Mukasyan, and A. Varma, “Single- and multi-wall carbon nanotubes produced using the floating catalyst method: synthesis, purification and hydrogen up-take,” Carbon, vol. 44, no. 11, pp. 2160–2170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. A. G. Osorio, I. C. L. Silveira, V. L. Bueno, and C. P. Bergmann, “H2SO4/HNO3/HCl—functionalization and its effect on dispersion of carbon nanotubes in aqueous media,” Applied Surface Science, vol. 255, no. 5, pp. 2485–2489, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Murugesan, K. Myers, and V. R. Subramanian, “Amino-functionalized and acid treated multi-walled carbon nanotubes as supports for electrochemical oxidation of formic acid,” Applied Catalysis B, vol. 103, no. 3-4, pp. 266–274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Shen, W. Huang, L. Wu, Y. Hu, and M. Ye, “Study on amino-functionalized multiwalled carbon nanotubes,” Materials Science and Engineering A, vol. 464, no. 1-2, pp. 151–156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Papirer, R. Lacroix, J.-B. Donnet, G. Nansé, and P. Fioux, “XPS study of the halogenation of carbon black—part 2: chlorination,” Carbon, vol. 33, no. 1, pp. 63–72, 1995. View at Google Scholar · View at Scopus
  40. A. F. Pérez-Cadenas, F. J. Maldonado-Hódar, and C. Moreno-Castilla, “On the nature of surface acid sites of chlorinated activated carbons,” Carbon, vol. 41, no. 3, pp. 473–478, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Vásquez, G. J. Cruz, M. G. Olayo, T. Timoshina, J. Morales, and R. Olayo, “Chlorine dopants in plasma synthesized heteroaromatic polymers,” Polymer, vol. 47, no. 23, pp. 7864–7870, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. J. F. Moulder, W. E. Stickle, P. E. Sobol, and K. E. Bomben, Handbook of X-Ray Photoelectron Spectroscopy. Eden Prairie (Minnesota): Perkin-Elmer, 1992.
  43. H. Piao, K. Adib, and M. A. Barteau, “A temperature-programmed X-ray photoelectron spectroscopy (TPXPS) study of chlorine adsorption and diffusion on Ag(1 1 1),” Surface Science, vol. 557, no. 1–3, pp. 13–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. J.-M. Yuan, X.-H. Chen, X.-H. Chen, Z.-F. Fan, X.-G. Yang, and Z.-H. Chen, “An easy method for purifying multi-walled carbon nanotubes by chlorine oxidation,” Carbon, vol. 46, no. 9, pp. 1266–1269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Barkauskas, I. Stankevičiene, and A. Selskis, “A novel purification method of carbon nanotubes by high-temperature treatment with tetrachloromethane,” Separation and Purification Technology, vol. 71, no. 3, pp. 331–336, 2010. View at Publisher · View at Google Scholar · View at Scopus