Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 842819, 7 pages
Research Article

The Thermal Conductivity of Carbon Nanotubes with Defects and Intramolecular Junctions

1Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
2Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong

Received 5 July 2013; Revised 11 November 2013; Accepted 15 November 2013

Academic Editor: Raymond Whitby

Copyright © 2013 Qiaoli Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The thermal conductivity of various carbon nanotubes with defects or intramolecular junctions was studied using nonequilibrium molecular dynamics approach. The results show that the thermal conductivity of both armchair and zigzag carbon nanotubes increased with the decrease of the radius of the tube. The thermal conductivity of armchair tube is higher than that of zigzag tube when the radii of the two tubes are kept almost same. Discontinuities appear on the temperature profile along the tube axial at the region of IMJ, resulting in the large temperature gradient and thus lower thermal conductivity of tube with one IMJ and tube with two IMJs. For the tube with two IMJs, phonon mean free path of the middle tube is much smaller than that of the isolate tube.