Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 856387, 13 pages
Review Article

Transport Behavior of Engineered Nanosized Photocatalytic Materials in Water

1School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
2Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing Institute of Green and Intelligent Technology, Chongqing 401122, China

Received 19 June 2013; Revised 1 July 2013; Accepted 1 July 2013

Academic Editor: Jiaguo Yu

Copyright © 2013 Guang’an He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Engineered nanoparticles (ENPs) possess unique properties and are employed in many sectors, and thus their release into environment remains. The potential risks of ENPs have been confirmed by an increasing number of studies that necessitate a better knowledge to the fate and transport of ENPs. One important application of ENP is photocatalysis for production of H2 as energy and pollutant decomposition. Engineered photocatalytic nanoparticles (PCNPs) can also easily enter the environment with the rapid increase in its manufacture and use. This review focuses on the transport of PCNPs in water by addressing the important factors that determine the transport of PCNPs, such as particle size, pH value, ionic strength (IS), ionic valence, and organic matter. The transport of PCNPs in natural water systems and wastewater systems is also presented with an attempt to provide more abundant information. In addition, the state of the art of the detection technologies of PCNPs has been covered.