Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 901452, 6 pages
http://dx.doi.org/10.1155/2013/901452
Research Article

Transparent Nanocrystallite Silver for Antibacterial Coating

Corrosion and Coating Laboratory, Physics Department, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

Received 18 March 2013; Revised 27 May 2013; Accepted 27 May 2013

Academic Editor: William W. Yu

Copyright © 2013 W. Ahliah Ismail et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W.-R. Li, X.-B. Xie, Q.-S. Shi, S.-S. Duan, Y.-S. Ouyang, and Y.-B. Chen, “Antibacterial effect of silver nanoparticles on Staphylococcus aureus,” BioMetals, vol. 24, no. 1, pp. 135–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. W.-R. Li, X.-B. Xie, Q.-S. Shi, H.-Y. Zeng, Y.-S. Ou-Yang, and Y.-B. Chen, “Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli,” Applied Microbiology and Biotechnology, vol. 85, no. 4, pp. 1115–1122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. S. Birla, V. V. Tiwari, A. K. Gade, A. P. Ingle, A. P. Yadav, and M. K. Rai, “Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus,” Letters in Applied Microbiology, vol. 48, no. 2, pp. 173–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Pallavicini, A. Taglietti, G. Dacarro et al., “Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: Low Ag+ release for an efficient antibacterial activity,” Journal of Colloid and Interface Science, vol. 350, no. 1, pp. 110–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Oveisi, S. Rahighi, X. Jiang et al., “Unusual antibacterial property of mesoporous titania films: drastic improvement by controlling surface area and crystallinity,” Chemistry, vol. 5, no. 9, pp. 1978–1983, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Marambio-Jones and E. M. V. Hoek, “A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment,” Journal of Nanoparticle Research, vol. 12, no. 5, pp. 1531–1551, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Gladitz, S. Reinentnn, and H.-J. Radusch, “Preparation of silver nanoparticle dispersions via a dendritic-polymer template approach and their use for antibacterial surface treatment,” Macromolecular Materials and Engineering, vol. 294, no. 3, pp. 178–189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Ploux, M. Mateescu, K. Anselme, and K. Vasilev, “Antibacterial properties of silver-loaded plasma polymer coatings,” Journal of Nanomaterials, vol. 2012, Article ID 674145, 9 pages, 2012. View at Publisher · View at Google Scholar
  9. W. Li, “Antibacterial coating incorporating silver nanoparticles by microarc oxidation and ion implantation,” Journal of Nanomaterials, vol. 2013, Article ID 542878, 8 pages, 2013. View at Publisher · View at Google Scholar
  10. W. A. Ismail, Z. A. Ali, and R. Puteh, “Optical and physical properties of methyltrimethoxysilane transparent film incorporated with nanoparticles,” Advances in Materials Science and Engineering, vol. 2012, Article ID 124820, 6 pages, 2012. View at Publisher · View at Google Scholar
  11. S. Suzuki, S. Imai, and H. Kourai, “Background and evidence leading to the establishment of the JIS standard for antimicrobial products,” Biocontrol Science, vol. 11, no. 3, pp. 135–145, 2006. View at Google Scholar · View at Scopus
  12. S. Imai, The Development of an ISO Standard for Measureing the Antibacterial Activity of Surfaces, Hygienic Coatings and Surfaces, Paris, France, 2005.
  13. ISO 22196, QualityLabs. N.p., n.d. Web, May 2013.
  14. J.-K. Liu, X.-H. Yang, and X.-G. Tian, “Preparation of silver/hydroxyapatite nanocomposite spheres,” Powder Technology, vol. 184, no. 1, pp. 21–24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. Li, S. Mahendra, D. Y. Lyon et al., “Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications,” Water Research, vol. 42, no. 18, pp. 4591–4602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S.-H. Kim, H.-S. Lee, D.-S. Ryu, S.-J. Choi, and D.-S. Lee, “Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli,” Korean Journal of Microbiology and Biotechnology, vol. 39, no. 1, pp. 77–85, 2011. View at Google Scholar · View at Scopus
  17. K. B. Holt and A. J. Bard, “Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag,” Biochemistry, vol. 44, no. 39, pp. 13214–13223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Kalishwaralal, S. BarathManiKanth, S. R. K. Pandian, V. Deepak, and S. Gurunathan, “Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis,” Colloids and Surfaces B, vol. 79, no. 2, pp. 340–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Y. Kim, C. Lee, M. Cho, and J. Yoon, “Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation,” Water Research, vol. 42, no. 1-2, pp. 356–362, 2008. View at Publisher · View at Google Scholar · View at Scopus