Table of Contents Author Guidelines Submit a Manuscript
Retracted

This article has been retracted upon the authors’ request, as they found that there are some wrong results in their paper.

View the full Retraction here.

References

  1. X. Zhang, M. Xu, X. Liu et al., “Restoration of critical-sized defects in the rabbit mandible using autologous bone marrow stromal cells hybridized with nano-β-tricalcium phosphate/collagen scaffolds,” Journal of Nanomaterials, vol. 2013, Article ID 913438, 8 pages, 2013.
Journal of Nanomaterials
Volume 2013, Article ID 913438, 8 pages
http://dx.doi.org/10.1155/2013/913438
Research Article

Restoration of Critical-Sized Defects in the Rabbit Mandible Using Autologous Bone Marrow Stromal Cells Hybridized with Nano-β-tricalcium Phosphate/Collagen Scaffolds

1Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
2State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
3The Oral Clinic of the 2nd Hospital of Beijing Armed Police Force, Beijing 100037, China
4National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China

Received 26 July 2013; Accepted 26 September 2013

Academic Editor: Haifeng Chen

Copyright © 2013 Xuehui Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. O. Hollinger and J. C. Kleinschmidt, “The critical size defect as an experimental model to test bone repair materials,” The Journal of Craniofacial Surgery, vol. 1, no. 1, pp. 60–68, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Liu, G. Wu, and K. De Groot, “Biomimetic coatings for bone tissue engineering of critical-sized defects,” Journal of the Royal Society Interface, vol. 7, supplement 5, pp. S631–S647, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Liu, G. Wu, D. Wismeijer, Z. Gu, and Y. Liu, “Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep,” Bone, vol. 56, no. 1, pp. 110–118, 2013. View at Publisher · View at Google Scholar
  4. M. H. Mankani, S. A. Kuznetsov, R. M. Wolfe, G. W. Marshall, and P. G. Robey, “In vivo bone formation by human bone marrow stromal cells: reconstruction of the mouse calvarium and mandible,” Stem Cells, vol. 24, no. 9, pp. 2140–2149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Nishikawa, A. Myoui, H. Ohgushi, M. Ikeuchi, N. Tamai, and H. Yoshikawa, “Bone tissue engineering using novel interconnected porous hydroxyapatite ceramics combined with marrow mesenchymal cells: quantitative and three-dimensional image analysis,” Cell Transplantation, vol. 13, no. 4, pp. 367–376, 2004. View at Google Scholar · View at Scopus
  6. M. C. Kruyt, C. Persson, G. Johansson, W. J. A. Dhert, and J. D. De Bruijn, “Towards injectable cell-based tissue-engineered bone: the effect of different calcium phosphate microparticles and pre-culturing,” Tissue Engineering, vol. 12, no. 2, pp. 309–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Minamide, M. Yoshida, M. Kawakami et al., “The use of cultured bone marrow cells in type I collagen gel and porous hydroxyapatite for posterolateral lumbar spine fusion,” Spine, vol. 30, no. 10, pp. 1134–1138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Yuan, L. Cui, W. J. Zhang, W. Liu, and Y. Cao, “Repair of canine mandibular bone defects with bone marrow stromal cells and porous β-tricalcium phosphate,” Biomaterials, vol. 28, no. 6, pp. 1005–1013, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Liu, L. Zhao, W. Zhang, L. Cui, W. Liu, and Y. Cao, “Repair of goat tibial defects with bone marrow stromal cells and β-tricalcium phosphate,” Journal of Materials Science, vol. 19, no. 6, pp. 2367–2376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. D. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage,” Biomaterials, vol. 21, no. 24, pp. 2529–2543, 2000. View at Google Scholar · View at Scopus
  11. A. J. Salgado, O. P. Coutinho, and R. L. Reis, “Bone tissue engineering: state of the art and future trends,” Macromolecular Bioscience, vol. 4, no. 8, pp. 743–765, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Kurashina, H. Kurita, Q. Wu, A. Ohtsuka, and H. Kobayashi, “Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits,” Biomaterials, vol. 23, no. 2, pp. 407–412, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Dong, T. Uemura, Y. Shirasaki, and T. Tateishi, “Promotion of bone formation using highly pure porous β-TCP combined with bone marrow-derived osteoprogenitor cells,” Biomaterials, vol. 23, no. 23, pp. 4493–4502, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. K.-Y. Chen, C.-M. Chung, Y.-S. Chen, D.-T. Bau, and C.-H. Yao, “Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair,” Journal of Tissue Engineering and Regenerative Medicine, vol. 7, no. 9, pp. 708–719, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Liu and P. X. Ma, “Polymeric scaffolds for bone tissue engineering,” Annals of Biomedical Engineering, vol. 32, no. 3, pp. 477–486, 2004. View at Google Scholar · View at Scopus
  16. S. J. Hollister, “Porous scaffold design for tissue engineering,” Nature Materials, vol. 4, no. 7, pp. 518–524, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Wei and P. X. Ma, “Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering,” Biomaterials, vol. 25, no. 19, pp. 4749–4757, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. H. H. K. Xu and C. G. Simon Jr., “Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility,” Biomaterials, vol. 26, no. 12, pp. 1337–1348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. B. M. B. Brkovic, H. S. Prasad, M. D. Rohrer et al., “Beta-tricalcium phosphate/type I collagen cones with or without a barrier membrane in human extraction socket healing: clinical, histologic, histomorphometric, and immunohistochemical evaluation,” Clinical Oral Investigations, vol. 16, no. 2, pp. 581–590, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. J. E. Mate-Sanchez de Val, P. Mazon, J. L. Guirado et al., “Comparison of three hydroxyapatite/beta-tricalciumphosphate/collagen ceramic scaffolds: an in vivo study,” Journal of Biomedical Materials Research A. In press.
  21. T. Matsuno, T. Nakamura, K.-I. Kuremoto et al., “Development of β-tricalcium phosphate/collagen sponge composite for bone regeneration,” Dental Materials Journal, vol. 25, no. 1, pp. 138–144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Zou, W. Weng, X. Deng et al., “Preparation and characterization of porous β-tricalcium phosphate/collagen composites with an integrated structure,” Biomaterials, vol. 26, no. 26, pp. 5276–5284, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Wang, Y. Li, Y. Zuo, J. Li, S. Ma, and L. Cheng, “Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering,” Biomaterials, vol. 28, no. 22, pp. 3338–3348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Li, W. Weng, K. Cheng et al., “Preparation of amorphous calcium phosphate in the presence of poly(ethylene glycol),” Journal of Materials Science Letters, vol. 22, no. 14, pp. 1015–1016, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Zou, W. Weng, X. Deng et al., “Preparation and characterization of porous β-tricalcium phosphate/collagen composites with an integrated structure,” Biomaterials, vol. 26, no. 26, pp. 5276–5284, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Zhang, Q. Cai, H. Liu et al., “Osteoconductive effectiveness of bone graft derived from antler cancellous bone: an experimental study in the rabbit mandible defect model,” International Journal of Oral & Maxillofacial Surgery, vol. 41, no. 11, pp. 1330–1337, 2012. View at Publisher · View at Google Scholar
  27. Y. Sawada, A. Hokugo, Y. Yang et al., “A novel hydroxyapatite ceramic bone substitute transformed by ostrich cancellous bone: characterization and evaluations of bone regeneration activity,” Journal of Biomedical Materials Research B, vol. 98, no. 2, pp. 217–222, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M.J. Beckman, K.J. Shields, and R. F. Diegelmann, “Collagen,” in Encyclopedia of Biomaterials and Biomedical Engineering, G. E. Wnek and G. L. Bowlin, Eds., pp. 324–334, Marcel Dekker, New York, NY, USA, 2004. View at Google Scholar
  29. S. P. Bruder and B. S. Fox, “Tissue engineering of bone: cell based strategies,” Clinical Orthopaedics and Related Research, no. 367, supplement, pp. S68–S83, 1999. View at Google Scholar · View at Scopus
  30. H.-W. Kim, H.-E. Kim, and V. Salih, “Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds,” Biomaterials, vol. 26, no. 25, pp. 5221–5230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Marom, I. Shur, R. Solomon, and D. Benayahu, “Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells,” Journal of Cellular Physiology, vol. 202, no. 1, pp. 41–48, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. U. Stucki, J. Schmid, C. F. Hämmerle, and N. P. Lang, “Temporal and local appearance of alkaline phosphatase activity in early stages of guided bone regeneration. A descriptive histochemical study in humans,” Clinical Oral Implants Research, vol. 12, no. 2, pp. 121–127, 2001. View at Google Scholar · View at Scopus
  33. K. Kurashina, H. Kurita, A. Kotani, H. Takeuchi, and M. Hirano, “In vivo study of a calcium phosphate cement consisting of α-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide,” Biomaterials, vol. 18, no. 2, pp. 147–151, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Kikuchi, Y. Koyama, T. Yamada et al., “Development of guided bone regeneration membrane composed of β-tricalcium phosphate and poly (L-lactide-co -glycolide-co-ε- caprolactone) composites,” Biomaterials, vol. 25, no. 28, pp. 5979–5986, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Guo, J. Su, J. Wei, H. Kong, and C. Liu, “Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering,” Acta Biomaterialia, vol. 5, no. 1, pp. 268–278, 2009. View at Publisher · View at Google Scholar · View at Scopus