Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 915461, 12 pages
Research Article

Influences of Stacking Architectures of TiO2 Nanoparticle Layers on Characteristics of Dye-Sensitized Solar Cells

1Department of Opto-Electronic Engineering, National Dong Hwa University, Hualien 97401, Taiwan
2Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, Graduate Institute of Electronics Engineering, and Innovative Photonics Advanced Research Center (i-PARC), National Taiwan University, Taipei 10617, Taiwan
3AU Optronics Corporation, Hsinchu 30078, Taiwan

Received 3 January 2013; Revised 17 March 2013; Accepted 25 March 2013

Academic Editor: Marinella Striccoli

Copyright © 2013 Chih-Hung Tsai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We investigated the influences of stacking architectures of the TiO2 nanoparticle layers on characteristics and performances of DSSCs. TiO2 nanoparticles of different sizes and compositions were characterized for their morphological and optical/scattering properties in thin films. They were used to construct different stacking architectures of the TiO2 nanoparticle layers for use as working electrodes of DSSCs. Characteristics and performances of DSSCs were examined to establish correlation of the stacking architectures of TiO2 nanoparticle layers with characteristics of DSSCs. The results suggest that the three-layer DSSC architecture, with sandwiching a 20 nm TiO2 nanoparticle layer between a 37 nm TiO2 nanoparticle layer and a hundred nm sized TiO2 back scattering/reflection layer, is effective in enhancing DSSC efficiencies. The high-total-transmittance 37 nm TiO2 nanoparticle layer with a larger haze can serve as an effective front scattering layer to scatter a portion of the incident light into larger oblique angles and therefore increase optical paths and absorption.