Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 924947, 19 pages
http://dx.doi.org/10.1155/2013/924947
Research Article

A Mucoadhesive Electrospun Nanofibrous Matrix for Rapid Oramucosal Drug Delivery

Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa

Received 15 July 2013; Accepted 29 August 2013

Academic Editor: Tong Lin

Copyright © 2013 Clare Dott et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” Journal of Electrostatics, vol. 35, no. 2-3, pp. 151–160, 1995. View at Google Scholar · View at Scopus
  2. D. Liang, B. S. Hsiao, and B. Chu, “Functional electrospun nanofibrous scaffolds for biomedical applications,” Advanced Drug Delivery Reviews, vol. 59, no. 14, pp. 1392–1412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. T. J. Sill and H. A. von Recum, “Electrospinning: applications in drug delivery and tissue engineering,” Biomaterials, vol. 29, no. 13, pp. 1989–2006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. B. Tan, “The effect of processing variables on the morphology of electrospun nanofibers and textiles,” Polymer, vol. 42, no. 1, pp. 261–272, 2001. View at Google Scholar · View at Scopus
  5. M. G. McKee, G. L. Wilkes, R. H. Colby, and T. E. Long, “Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters,” Macromolecules, vol. 37, no. 5, pp. 1760–1767, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. L. Shenoy, W. D. Bates, H. L. Frisch, and G. E. Wnek, “Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit,” Polymer, vol. 46, no. 10, pp. 3372–3384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Frenot and I. S. Chronakis, “Polymer nanofibers assembled by electrospinning,” Current Opinion in Colloid and Interface Science, vol. 8, no. 1-2, pp. 64–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. D. H. Reneker and A. L. Yarin, “Electrospinning jets and polymer nanofibers,” Polymer, vol. 49, no. 10, pp. 2387–2425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer, vol. 43, no. 16, pp. 4403–4412, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Agarwal, J. H. Wendorff, and A. Greiner, “Use of electrospinning technique for biomedical applications,” Polymer, vol. 49, no. 26, pp. 5603–5621, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Bruner and St. Tolloczko, “Über die Auflösungsgeschwindigkeit fester Körper,” Zeitschrift für Anorganische Chemie, vol. 28, no. 1, pp. 314–330, 1901. View at Google Scholar
  12. E. Sjokvist and C. Nystrom, “Physicochemical aspects of drug release. XI. Tableting properties of solid dispersions, using xylitol as carrier material,” International Journal of Pharmaceutics, vol. 67, no. 2, pp. 139–153, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Verreck, I. Chun, J. Peeters, J. Rosenblatt, and M. E. Brewster, “Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning,” Pharmaceutical Research, vol. 20, no. 5, pp. 810–817, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Dokoumetzidis and P. Macheras, “A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system,” International Journal of Pharmaceutics, vol. 321, no. 1-2, pp. 1–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Ponchel, “Formulation of oral mucosal drug delivery systems for the systemic delivery of bioactive materials,” Advanced Drug Delivery Reviews, vol. 13, no. 1-2, pp. 75–87, 1994. View at Google Scholar · View at Scopus
  16. S. Rossi, G. Sandri, and C. M. Caramella, “Buccal drug delivery: a challenge already won?” Drug Discovery Today: Technologies, vol. 2, no. 1, pp. 59–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. J. Rathbone, B. K. Drummond, and I. G. Tucker, “The oral cavity as a site for systemic drug delivery,” Advanced Drug Delivery Reviews, vol. 13, no. 1-2, pp. 1–22, 1994. View at Google Scholar · View at Scopus
  18. J. Abrams, “New nitrate delivery systems: buccal nitroglycerin,” The American Heart Journal, vol. 105, no. 5, pp. 848–854, 1983. View at Google Scholar · View at Scopus
  19. O. A. Scholz, A. Wolff, A. Schumacher et al., “Drug delivery from the oral cavity: focus on a novel mechatronic delivery device,” Drug Discovery Today, vol. 13, no. 5-6, pp. 247–253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. D. M. Simpson, J. Messina, F. Xie, and M. Hale, “Fentanyl buccal tablet for the relief of breakthrough pain in opioid-tolerant adult patients with chronic neuropathic pain: a multicenter, randomized, double-blind, placebo-controlled study,” Clinical Therapeutics, vol. 29, no. 4, pp. 588–601, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Baji, Y. W. Mai, S. C. Wong, M. Abtahi, and P. Chen, “Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties,” Composites Science and Technology, vol. 70, no. 5, pp. 703–718, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. E. P. S. Tan and C. T. Lim, “Mechanical characterization of nanofibers—a review,” Composites Science and Technology, vol. 66, no. 9, pp. 1102–1111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. E. P. S. Tan, S. Y. Ng, and C. T. Lim, “Tensile testing of a single ultrafine polymeric fiber,” Biomaterials, vol. 26, no. 13, pp. 1453–1456, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Coviello, F. Alhaique, C. Parisi, P. Matricardi, G. Bocchinfuso, and M. Grassi, “A new polysaccharidic gel matrix for drug delivery: preparation and mechanical properties,” Journal of Controlled Release, vol. 102, no. 3, pp. 643–656, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. N. R. Adhikari, B. S. Nayak, A. K. Nayak, and B. Mohanty, “Formulation and evaluation of buccal patches for delivery of atenolol,” AAPS PharmSciTech, vol. 11, no. 3, pp. 1038–1044, 2010. View at Google Scholar
  26. M. A. Zaman, G. P. Martin, and G. D. Rees, “Mucoadhesion, hydration and rheological properties of non-aqueous delivery systems (NADS) for the oral cavity,” Journal of Dentistry, vol. 36, no. 5, pp. 351–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. G. P. Andrews, T. P. Laverty, and D. S. Jones, “Mucoadhesive polymeric platforms for controlled drug delivery,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 71, no. 3, pp. 505–518, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Perioli, V. Ambrogi, F. Angelici et al., “Development of mucoadhesive patches for buccal administration of ibuprofen,” Journal of Controlled Release, vol. 99, no. 1, pp. 73–82, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Singh, R. Kumar, and N. Ahuja, “Optimizing drug delivery systems using systematic “design of experiments”—part I: fundamental aspects,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 22, no. 1, pp. 27–105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. L. C. Ferreira, R. E. Bruns, H. S. Ferreira et al., “Box-Behnken design: an alternative for the optimization of analytical methods,” Analytica Chimica Acta, vol. 597, no. 2, pp. 179–186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. G. E. P. Box and D. W. Behnken, “Some new three level designs for the study of quantitative variables,” Technometrics, vol. 2, no. 4, pp. 455–475, 1960. View at Publisher · View at Google Scholar
  32. S. Chopra, S. K. Motwani, Z. Iqbal, S. Talegaonkar, F. J. Ahmad, and R. K. Khar, “Optimisation of polyherbal gels for vaginal drug delivery by Box-Behnken statistical design,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 67, no. 1, pp. 120–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. V. M. Patel, B. G. Prajapati, and M. M. Patel, “Formulation, evaluation, and comparison of bilayered and multilayered mucoadhesive buccal devices of propranolol hydrochloride,” AAPS PharmSciTech, vol. 8, no. 1, pp. E147–E154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Sibeko, V. Pillay, Y. E. Choonara et al., “Computational molecular modeling and structural rationalization for the design of a drug-loaded PLLA/PVA biopolymeric membrane,” Biomedical Materials, vol. 4, no. 1, Article ID 015014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Azarmi, W. Roa, and R. Löbenberg, “Current perspectives in dissolution testing of conventional and novel dosage forms,” International Journal of Pharmaceutics, vol. 328, no. 1, pp. 12–21, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Figueiras, J. Hombach, F. Veiga, and A. Bernkop-Schnürch, “In vitro evaluation of natural and methylated cyclodextrins as buccal permeation enhancing system for omeprazole delivery,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 71, no. 2, pp. 339–345, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Kumar, V. Pillay, Y. E. Choonara, G. Modi, D. Naidoo, and L. C. du Toit, “In silico theoretical molecular modeling for Alzheimer's disease: the nicotine-curcumin paradigm in neuroprotection and neurotherapy,” International Journal of Molecular Sciences, vol. 12, no. 1, pp. 694–724, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. M. E. Malone, I. A. M. Appelqvist, and I. T. Norton, “Oral behaviour of food hydrocolloids and emulsions—part 1: lubrication and deposition considerations,” Food Hydrocolloids, vol. 17, no. 6, pp. 763–773, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers, World Scientific, London, UK, 2005.
  40. P. Bottenberg, R. Cleymaet, C. de Muynck et al., “Development and testing of bioadhesive, fluoride-containing slow-release tablets for oral use,” Journal of Pharmacy and Pharmacology, vol. 43, no. 7, pp. 457–464, 1991. View at Google Scholar · View at Scopus
  41. J. W. Lu, Z. P. Zhang, X. Z. Ren, Y. Z. Chen, J. Yu, and Z. X. Guo, “High-elongation fiber mats by electrospinning of polyoxymethylene,” Macromolecules, vol. 41, no. 11, pp. 3762–3764, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Karavas, E. Georgarakis, and D. Bikiaris, “Application of PVP/HPMC miscible blends with enhanced mucoadhesive properties for adjusting drug release in predictable pulsatile chronotherapeutics,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 64, no. 1, pp. 115–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Sudhakar, K. Kuotsu, and A. K. Bandyopadhyay, “Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs,” Journal of Controlled Release, vol. 114, no. 1, pp. 15–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Y. Yu, J. W. Chung, and S. Y. Kwak, “Reduced migration from flexible poly(vinyl chloride) of a plasticizer containing β-cyclodextrin derivative,” Environmental Science and Technology, vol. 42, no. 19, pp. 7522–7527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Abou-Rachid, L. Lussier, S. Ringuette, X. Lafleur-Lambert, M. Jaidann, and J. Brisson, “On the correlation between miscibility and solubility properties of energetic plasticizers/polymer blends: modeling and simulation studies,” Propellants, Explosives, Pyrotechnics, vol. 33, no. 4, pp. 301–310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Sakellariou, A. Hassan, and R. C. Rowe, “Plasticization of aqueous poly(vinyl alcohol) and hydroxypropyl methylcellulose with polyethylene glycols and glycerol,” European Polymer Journal, vol. 29, no. 7, pp. 937–943, 1993. View at Google Scholar · View at Scopus
  47. N. K. Mongia, K. S. Anseth, and N. A. Peppas, “Mucoadhesive poly(vinyl alcohol) hydrogels produced by freezing/thawing processes: applications in the development of wound healing systems,” Journal of Biomaterials Science, Polymer Edition, vol. 7, no. 12, pp. 1055–1064, 1996. View at Google Scholar · View at Scopus
  48. P. Kumar and M. Bhatia, “Functionalization of chitosan/methylcellulose interpenetrating polymer network microspheres for gastroretentive application using central composite design,” PDA Journal of Pharmaceutical Science and Technology, vol. 64, no. 6, pp. 497–506, 2010. View at Google Scholar · View at Scopus