Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014 (2014), Article ID 123680, 5 pages
http://dx.doi.org/10.1155/2014/123680
Research Article

Preparation of Mesoporous SBA-16 Silica-Supported Biscinchona Alkaloid Ligand for the Asymmetric Dihydroxylation of Olefins

1Faculty of Industrial Sciences and Technology, University Malaysia Pahang, 26300 Gambang, Kuantan, Malaysia
2Nanotechnology and Catalysis Research Centre (NanoCat), University of Malaya, Level 3, Block A, IPS Building, 50603 Kuala Lumpur, Malaysia

Received 21 March 2014; Revised 20 May 2014; Accepted 21 May 2014; Published 15 June 2014

Academic Editor: Daniela Predoi

Copyright © 2014 Shaheen M. Sarkar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Corma, “From microporous to mesoporous molecular sieve materials and their use in catalysis,” Chemical Reviews, vol. 97, no. 6, pp. 2373–2420, 1997. View at Publisher · View at Google Scholar
  2. U. Ciesla and F. Schüth, “Ordered mesoporous materials,” Microporous and Mesoporous Materials, vol. 27, no. 2-3, pp. 131–149, 1999. View at Google Scholar · View at Scopus
  3. A. Taguchi and F. Schüth, “Ordered mesoporous materials in catalysis,” Microporous and Mesoporous Materials, vol. 77, no. 1, pp. 1–45, 2005. View at Publisher · View at Google Scholar
  4. Y. K. Hwang, J.-S. Chang, Y.-U. Kwon, and S.-E. Park, “Microwave synthesis of cubic mesoporous silica SBA-16,” Microporous and Mesoporous Materials, vol. 68, no. 1–3, pp. 21–27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. R. A. Fernandes and A. K. Chowdhury, “Stereoselective total synthesis of (+)-nephrosteranic acid and (+)-roccellaric acid through asymmetric dihydroxylation and Johnson–Claisen rearrangement,” European Journal of Organic Chemistry, vol. 2011, no. 6, pp. 1106–1112, 2011. View at Google Scholar
  6. D. Yamashita, Y. Murata, N. Hikage, K.-I. Takao, A. Nakazaki, and S. Kobayashi, “Total synthesis of (-)-norzoanthamine,” Angewandte Chemie—International Edition, vol. 48, no. 8, pp. 1404–1406, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Gao, Z. Tong, H. Hu et al., “Synthesis of (+)-9a-epi-stemoamide via DBU-catalyzed michael addition of nitroalkane,” Synlett, no. 13, pp. 2188–2190, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Yu, B. Tian, J. Fan, G. D. Stucky, and D. Zhao, “Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts,” Journal of the American Chemical Society, vol. 124, no. 17, pp. 4556–4557, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Sakamoto, M. Kaneda, O. Terasaki et al., “Direct imaging of the pores and cages of three-dimensional mesoporous materials,” Nature, vol. 408, no. 6811, pp. 449–453, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Md. Alam, S. M. Sarkar, and R. Md. Miah, “Heterogeneous Heck reaction catalysed by silica gel-supported 1,2-diaminocyclohexane-Pd complex,” Reaction Kinetics and Catalysis Letters, vol. 98, no. 2, pp. 383–389, 2009. View at Publisher · View at Google Scholar
  11. E. N. Jacobsen, A. Pfaltz, and H. Yamamoto, in Comprehensive Asymmetric Catalysis II, Springer, Berlin, Germany, 1999. View at Publisher · View at Google Scholar
  12. D. J. Smaltz and A. G. Myers, “Scalable synthesis of enantiomerically pure syn-2,3-dihydroxybutyrate by sharpless asymmetric dihydroxylation of p-phenylbenzyl crotonate,” The Journal of Organic Chemistry, vol. 76, no. 20, pp. 8554–8559, 2011. View at Publisher · View at Google Scholar
  13. J. Peed, I. R. Davies, L. R. Peacock, J. E. Taylor, G. K. Köhn, and S. D. Bull, “Dihydroxylation-based approach for the asymmetric syntheses of hydroxy-γ-butyrolactones,” The Journal of Organic Chemistry, vol. 77, no. 1, pp. 543–555, 2012. View at Publisher · View at Google Scholar
  14. M. X. Zhao, H. L. Bi, H. Zhou, H. Yang, and M. Shi, “Cinchona alkaloid squaramide catalyzed enantioselective hydrazination/cyclization cascade reaction of α-isocyanoacetates and azodicarboxylates: synthesis of optically active 1,2,4-triazolines,” The Journal of Organic Chemistry, vol. 78, p. 9377, 2013. View at Publisher · View at Google Scholar
  15. H. C. Kolb, M. S. VanNieuwenhze, and K. B. Sharpless, “Catalytic asymmetric dihydroxylation,” Chemical Reviews, vol. 94, no. 8, pp. 2483–2547, 1994. View at Google Scholar · View at Scopus
  16. H. Salim and O. Piva, “A short access to 3-hydroxy-4-hydroxymethyltetrahydrofurans: application to the total synthesis of amphiasterin B4,” The Journal of Organic Chemistry, vol. 74, no. 5, pp. 2257–2260, 2009. View at Publisher · View at Google Scholar
  17. G.-B. Ren and Y. Wu, “Enantioselective total synthesis and correction of the absolute configuration of megislactone,” Tetrahedron, vol. 64, no. 19, pp. 4408–4415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Huo, X. Ren, Y. Xu, X. Li, X. She, and X. Pan, “Enantioselective total synthesis of hydramicromelin B,” Tetrahedron Asymmetry, vol. 19, no. 3, pp. 343–347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. L. L. Lazarusa and R. L. Brutchey, “Heterogeneous fullerene-supported osmium tetroxide catalyst for the cis-dihydroxylation of olefins,” Dalton Transactions, vol. 39, pp. 7888–7890, 2010. View at Publisher · View at Google Scholar
  20. R. Cano, J. M. Pérez, and D. J. Ramón, “Osmium impregnated on magnetite as a heterogeneous catalyst for the syn-dihydroxylation of alkenes,” Applied Catalysis A: General, vol. 470, pp. 177–182, 2004. View at Publisher · View at Google Scholar
  21. S. M. Sarkar, N. Md. Alam, and R. Md. Miah, “Highly efficient silica gel-supported 1,2-diaminocyclohexane-Pd catalyst for Suzuki-Miyaura and Sonogashira coupling reactions,” Reaction Kinetics and Catalysis Letters, vol. 96, no. 1, pp. 175–183, 2009. View at Publisher · View at Google Scholar
  22. N. Md. Alam and S. M. Sarkar, “Mesoporous MCM-41 supported N-heterocyclic carbene-Pd(II) complex for Suzuki coupling reaction,” Reaction Kinetics, Mechanisms, and Catalysis, vol. 103, no. 2, pp. 493–500, 2011. View at Publisher · View at Google Scholar
  23. M. S. Sarkar, H. Qiu, and M.-J. Jin, “Encapsulation of Pd complex in ionic liquid on highly ordered mesoporous silica MCM-41,” Journal of Nanoscience and Nanotechnology, vol. 7, no. 11, pp. 3880–3883, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Qiu, S. M. Sarkar, H. Do. Lee, and M. J. Jin, “Highly effective silica gel-supported N-heterocyclic carbene-Pd catalyst for Suzuki-Miyaura coupling reaction,” Green Chemistry, vol. 10, pp. 37–40, 2008. View at Publisher · View at Google Scholar
  25. C. E. Song, J. W. Yang, and H.-J. Ha, “Silica gel supported bis-cinchona alkaloid: a highly efficient chiral ligand for heterogeneous asymmetric dihydroxylation of olefins,” Tetrahedron Asymmetry, vol. 8, no. 6, pp. 841–844, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. S. H. Kim and M. J. Jin, “Asymmetric dihydroxylation catalyzed by MCM-41 silica-supported bis-cinchona alkaloid,” Studies in Surface Science and Catalysis, vol. 146, pp. 677–680, 2003. View at Google Scholar
  27. H. M. Lee, S.-W. Kim, T. Hyeon, and B. M. Kim, “Asymmetric dihydroxylation using heterogenized cinchona alkaloid ligands on mesoporous silica,” Tetrahedron Asymmetry, vol. 12, no. 11, pp. 1537–1541, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, “Nonionic triblock and star diblock copolymer and oligomeric sufactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures,” Journal of the American Chemical Society, vol. 120, no. 24, pp. 6024–6036, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” Journal of the American Chemical Society, vol. 60, no. 2, pp. 309–319, 1938. View at Google Scholar · View at Scopus
  30. W. W. Lukens Jr., P. Schmidt-Winkel, D. Zhao, J. Feng, and G. D. Stucky, “Evaluating pore sizes in mesoporous materials: a simplified standard adsorption method and a simplified Broekhoff-de Boer method,” Langmuir, vol. 15, no. 16, pp. 5403–5409, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Romero, A. Santos, J. Tojo, and A. Rodríguez, “Toxicity and biodegradability of imidazolium ionic liquids,” Journal of Hazardous Materials, vol. 151, no. 1, pp. 268–273, 2008. View at Publisher · View at Google Scholar
  32. L. C. Branco and C. A. M. Afonso, “Ionic liquids as a convenient new medium for the catalytic asymmetric dihydroxylation of olefins using a recoverable and reusable osmium/ligand,” The Journal of Organic Chemistry, vol. 69, no. 13, pp. 4381–4389, 2004. View at Publisher · View at Google Scholar
  33. M. H. Junttila and O. O. E. Hormi, “Methanesulfonamide: a cosolvent and a general acid catalyst in sharpless asymmetric dihydroxylations,” Journal of Organic Chemistry, vol. 74, no. 8, pp. 3038–3047, 2009. View at Publisher · View at Google Scholar · View at Scopus