Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 196074, 12 pages
http://dx.doi.org/10.1155/2014/196074
Research Article

Multiwalled Carbon Nanotube Nanofluids Used for Heat Dissipation in Hybrid Green Energy Systems

Department of Industrial Education, National Taiwan Normal University, No. 162, Heping East Road, Section 1, Da-an District, Taipei City 10610, Taiwan

Received 22 April 2014; Accepted 16 June 2014; Published 13 July 2014

Academic Editor: Chunyi Zhi

Copyright © 2014 Yi-Hsuan Hung and Hung-Jhih Gu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This study was conducted to characterize carbon nanotube (CNT)/water nanofluids (CNWNFs) and to apply the nanofluids in a heat-dissipation system of dual green energy sources. CNTs were mixed with water in weight fractions of 0.125%, 0.25%, and 0.5% to produce nanofluids. The thermal conductivity, density, viscosity, and specific heat of the nanofluids were measured. An experimental platform consisting of a simulated dual energy source and a microchip controller was established to evaluate the heat-dissipation performance. Two indices, the heat dissipation enhancement ratio and specific heat dissipation enhancement ratio (SHDER), were defined and calculated. The CNWNFs with a CNT concentration of 0.125 wt.% were used because they exhibited the highest SHDER. The steady-state performance was evaluated at 2 flow rates, 11 hybrid flow ratios, and 3 heating ratios for a total power of 1000 W. The transient behavior of the energy sources at preset optimal temperatures was examined, and the CNWNFs exhibited average increases in stability and heat dissipation efficiency of 36.2% and 5%, respectively, compared with water. This nanofluid heat-dissipation system is expected to be integrated with real dual energy sources in the near future.