Research Article  Open Access
Adsorption of Reactive Black 5 on Synthesized Titanium Dioxide Nanoparticles: Equilibrium Isotherm and Kinetic Studies
Abstract
The synthesized titanium dioxide nanoparticles (TiO_{2}NPs) were used as adsorbent to remove reactive black 5 (RB 5) in aqueous solution. Various factors affecting adsorption of RB 5 aqueous solutions such as pH, initial concentration, contact time, dose of nanoparticles, and temperature were analyzed at fixed solid/solution ratio. Langmuir and Freundlich isotherms were used as model adsorption equilibrium data. Langmuir isotherm was found to be the most adequate model. The pseudofirstorder, pseudosecondorder, and intraparticle diffusion models were used to describe the adsorption kinetics. The experimental data was fitted to pseudosecondorder kinetics. The thermodynamic parameters such as Gibbsfree energy, enthalpy, and entropy changes were determined. These parameters indicated the endothermic and spontaneity nature of the adsorption. The results demonstrated the fact that the TiO_{2}NPs are promising adsorbent for the removal of RB 5 from aqueous solutions.
1. Introduction
In order to remove dyes from wastewaters, there are various methods of development, including chemical oxidation [1], biodegradation [2], electrocoagulation [3], photodegradation [4], solvent extraction [5], ultrafiltration [6], and adsorption [7]. The adsorption technique is the most favorable method for the removal of dyes because of its simple design, easy operation, and relatively simple regeneration [8]. Wastewater industries may contain a variety of organic compounds and toxic substances that exhibit toxic effects for microbial populations and can be toxic and carcinogenic for animals [9].
Azo reactive dyes, which have two azo groups, represent about half of all reactive dyes such as RB 5 (see Figure 1). These types of dyes are known to be toxic, carcinogenic, and mutagenic. Their removal from the environment can result in nonaesthetic pollution. Moreover, these dyes are not easily degraded by conventional aerobic wastewater treatment due to their recalcitrance [10]. Many important sources of environment contamination are synthesis of dye, leather, cosmetics, papers, food processing, pulp mill, pharmaceuticals, and plastics industries [11].
Equilibrium isotherms and kinetics with the presence of methylene blue adsorption onto activated carbon which have been the focus of various studies were used to be prepared from various agricultural wastes such as bamboo [12], coconut husk [13], vetiver roots [14], peach stones [15], rattan sawdust [16], durian shell [17], oil palm fiber [18], coffee husk [19], ground nut shell [20], waste apricot, olive stones [21], hazelnut shell [22], and corncob [23]. Several methods which treat dye wastewater with various biological, chemical, and physical technologies [24, 25] prove to be very useful for environmental purification. Previous studies conducted on the adsorption rate of benzoic acid on cetyl pyridine bromidemodified bentonites fitted a pseudosecondorder kinetics model well ( = 0.999). The results were analyzed according to Henry, Langmuir, and Freundlich isotherm model equations. TiO_{2} has been extensively studied as one of the superior candidates of semiconductors due to its cheapness, photostability, chemical inertness, nontoxicity, and strong photocatalytic activity [26]. Many methods, such as adsorption, chemical precipitation, ion exchange, membrane processes, biological degradation, chemical oxidation, and solvent extraction have been employed to remove organic pollutants from aqueous solutions [27]. It is well known that an increase in a plentiful of the surface quality of the TiO_{2}NPs is due to the increase of the overall crystallinity and crystal size of nanoparticles which can improve the anchoring geometry of the dye on their surfaces and faster adsorption [28].
Nanomaterials have a higher distortion of surface structure than bulk materials due to their inherent lattice strain. As a result, the surface modifications of TiO_{2}NPs are more beneficial for adsorption than that of bulk TiO_{2} [30]. Many methods have been employed to fabricate TiO_{2}NPs. One of these methods is the metal organic chemical vapor deposition (MOCVD), which is considered a promising technique for producing nanoparticles because of its relative low cost and simplicity of the process [31]. The asprepared of anatase TiO_{2} hollow spheres have a higher surface area; therefore, they showed much higher adsorption and photoreactivity than TiO_{2} nanoparticles. In addition, some of hallow spheres which use a sulfonated polystyrene template have very good adsorption and photocatalytic activity [32]. TiO_{2} is a very important functional metal oxide material with direct band gap of 3.2 eV at room temperature [33], large specific surface area, and aspect ratio. Onedimensional TiO_{2} nanostructures have wide applications in optical, electronic, and photocatalytic fields [34]. The synthesized nanoparticles are attractive for further improvement of the reactivity of TiO_{2} as a catalyst. Compared with the other TiO_{2} powders, these TiO_{2} nanoparticles have several advantages, such as amorphous form, fine particle size with more uniform distribution, and high dispersion in polar solvent, stronger interfacial adsorption, and being environmentally friendly. In the adsorption results, not only the surface area factor should be considered, but also the TiO_{2} high ionexchange ability and the dye cationic character [35]. In our work, 80% of the RB 5 was adsorbed on the surface TiO_{2} after one hour of dark stirring conditions. This result is clear evidence of the high RB 5 adsorption capability of adsorbent. Identical adsorbability values were reported in the literature [36]. TiO_{2} can be seen as an efficient and costeffective adsorbent for the removal of pollutants from real wastewaters. The main advantages of the synthesized catalyst for the removal of RB 5 from water and wastewater include a high adsorption rate, capacity, and efficacy, as well as a suitable equilibration time. Furthermore, TiO_{2}NPs are available as a nocost waste and can be used without modifications. Thus, TiO_{2}NPs adsorption is environmentally friendly and achieves treatment goals in a simple and lowcost manner. The adsorption emphasizes the engineering applications that govern the actual water purification process, including the fabrication of TiO_{2}based adsorbents, process optimization, and economic consideration [37].
Recently, advanced oxidation processes (AOPs) have considerable interest due to their utility in complete elimination of dyes. Most reactive species are generating through AOPs such as hydroxyl radicals that oxidize a broad range of organic pollutants quickly and nonselectively [38, 39]. It is worth mentioning here that the previous studies have not explored this synthesized TiO_{2}NPs; thus, this study is considered the first attempt to assess the suitability of this catalyst for engineering applications. In particular, this study aims to determine whether this catalyst delivers better performance in adsorption. It is expected to play a prominent role as an effective adsorbent in competing of the purification processes and economical ways.
2. Experimental Procedure
2.1. Materials
The supplier of reactive black 5 was textile factory (Hilla, Iraq), with formula of C_{26}H_{21}N_{5}Na_{4}O_{19}S_{6}, molecular weight of 991.82 g mol^{−1}, and maximum light absorbed wavelength of 597 nm. The synthesized TiO_{2}NPs were prepared using sol gel method (from 99.98% absolute EtOH (GCC) and 99.99% TiCl_{4} (Fluka)).
2.2. Adsorption Experiments
The equilibrium isotherm of RB 5 adsorption on TiO_{2}NPs was determined by performing adsorption tests in 250 mL conical flasks. 100 mL of RB 5 dye solutions with different initial concentrations (30, 40, 50, 60, 70, and 80 mg L^{−1}) was placed in each flask. The normal pH of the solutions was 5.5. The prepared TiO_{2}NPs of 0.175 g were added to each flask and kept in a shaker of 190 rpm at 30°C for 1 hour to reach equilibrium. The suspensions were sampled at regular intervals. 4 cm^{3} of the reaction mixture was collected and centrifuged for 15 min. The supernatant was carefully removed by a syringe with a long pliable needle. This is necessary to remove the fine particles of the catalyst. The supernatant concentrations of RB 5 were analyzed by UVvisible spectrophotometer (PG instruments Ltd., Japan, UV160A) at maximum wave lengths of 597 nm. The adsorbed amount of RB 5 at equilibrium (mg g^{−1}) was calculated by the following expression: where and (mg L^{−1}) are the initial and equilibrium concentrations of RB 5 solution, (L) is the volume of solution, and (g) is the weight of synthesized TiO_{2}NPs used.
A typical preparation procedure is exemplified later in the paper.
2.3. Thermodynamic Experiments
Batch adsorption experiments were performed using 0.175 g of the synthesized TiO_{2}NPs with 100 mL of RB 5 aqueous solutions in 250 cm^{3} conical flasks. Concentration, pH, and temperature check were determined. The sample was shaken at 120 rpm in a shaking water bath (Memmert GmbH+Co.,KG, Germany). After 60 min desired contact time, suspension was separated by centrifugation. The supernatant solutions for color removal were analyzed by using an UVvis spectrophotometer (PG instruments Ltd., Japan, UV160A). The adsorbed amount of RB 5 at equilibrium (mg g^{−1}) was calculated.
3. Results and Discussion
3.1. Adsorption
Adsorption isotherms are important for the description of how adsorbate (RB 5) interacts with an adsorbent (TiO_{2}NPs) and are also critical in optimizing the use of adsorbent. Thus, the correlation of experimental equilibrium data using either a theoretical or empirical equations is essential for adsorption data interpretation and prediction. Several mathematical models can be used to describe experimental data of adsorption isotherms. Five famous isotherm equations, namely, the Langmuir, Freundlich, pseudofirstorder, pseudosecondorder, and intraparticle diffusion model, were applied to fit the experimental equilibrium isotherm data of RB 5 adsorption on the prepared TiO_{2}NPs.
3.2. Fundamental Parameters in Adsorption
3.2.1. Effect of Contact Time
The effect of contact time on adsorption capacity of TiO_{2}NPs for RB 5 at different initial concentrations of RB 5 is shown in Figure 2. The results indicate that the adsorbed amount of RB 5 increases with the increase of contact time. The adsorption approximately reached equilibrium in about 1 hour. The maximum adsorbed amount of 16.87, 22.43, 27.38, 31.33, 33.76, and 36.67 mg g^{−1} was obtained at 30, 40, 50, 60, 70, and 80 mg L^{−1} initial RB 5 concentration, respectively; one hour contact time; normal pH value 5.5; and 1.75 g L^{−1} adsorbent dose. These results also show that rapid increase in adsorbed amount of RB 5 was achieved during the first 10 minutes. Similar results for the removal of hazardous contaminants from wastewater were reported [40]. The fast adsorption at the initial stage may be due to the higher driving force making fast transfer of RB 5 to the surface of TiO_{2}NPs, the availability of the uncovered surface area, and the remaining active sites on the adsorbent [41].
3.2.2. Effect of Initial Concentration of RB 5 Dye
Six different concentrations of 30, 40, 50, 60, 70, and 80 mg L^{−1} for RB 5 were selected to investigate the effect of initial concentration of dye onto the synthesized TiO_{2}NPs. The amounts of dye molecules adsorbed at equilibrium and pH 5.5 are graphed in Figure 3. With the initial increase of the concentration of RB 5 from 30 to 80 mg L^{−1}, the removal of dye molecules adsorbed by adsorbent decreases from 98.04 to 80.21% after one hour of adsorption time. These results correspond to the adsorption of nitrate from aqueous solution using modified rice husk [42].
3.2.3. Effect of Adsorbent Dosage
The effect of adsorbent dosage on the adsorption of RB 5 is shown in Figure 4. The percent removal increases from 40.06 to 99.16% by increasing the adsorbent dosage from 0.1 to 0.35 g after one hour of adsorption time. It is apparent from this figure that, by increasing the catalyst amount, the adsorption efficiency increases, but adsorption density and the amount adsorbed per unit mass decrease. It is easily understood that the number of available adsorption sites increases by increasing the adsorbent amount, but the drop in adsorption capacity is basically due to the sites remaining unsaturated during the adsorption process. If the active sites are available, the pollutant left in the system will continuously be adsorbed. In other words, the increase with TiO_{2}NPs dosage of the amount of dye adsorbed was caused by the availability of more surface area of the TiO_{2}NPs. Direct evidence of TiO_{2}NPs entanglement was not clear and unexpected. However, similar observations can be found in the literature [43–46].
3.2.4. Effect of pH
The adsorption of the RB 5 onto an adsorbent generally varies with pH because pH changes the radius of hydrolyzed cation and the charge of the adsorbent surface. Therefore, in this study, the adsorption of RB 5 dye onto the prepared TiO_{2}NPs in our lab was studied as a function of pH. The pH values of RB 5 solutions were adjusted as 2.0, 4.0, 6.0, and 8.0. The relationship between initial pH and the amounts of dye adsorbed on the TiO_{2}NPs for the initial solution concentration of 70 mg L^{−1} at 30°C and a contact time of 60 min is illustrated in Figure 5. pH change affects the adsorption quantity of organic pollutants and the ways of adsorption on the surface of catalyst. As a result, the adsorption efficiency will greatly be influenced by pH changes which can be explained with the protonation or unprotonation of the functional groups on the surface of TiO_{2} as well as the dye. When initial pH values of solutions are increased from 2.0 to 8.0, the amounts of adsorbed dye per unit mass of adsorbent are changed. For example, the amounts of dye molecules adsorbed dye per adsorbent decrease from 20.32 to 15.08 mg g^{−1} when the pH value increases from 2.0 to 4.0. As seen in this figure, pH 6 is a value for the maximum adsorption of RB 5. A rising in the pH closes to 6.0 gives the maximum adsorption capacity. In this point, pH was called the zero point charge (Z.P.C). Hussein [47] reported that the zero point charge for commercial TiO_{2} (Degussa P25) is equal to 6.25. Also, when the pH values of solutions were continuously increased from 6.0 to 8.0, the amounts of dye molecules adsorbed per unit adsorbent decrease from 23.95 to 18.11 mg g^{−1}. These results indicate that the adsorbed amount of RB 5 was strongly dependent on pH of solution because the reaction takes place on the surface of synthesized catalyst. The concept could be explained as follows: the increase of the pH solution makes the surface of catalyst negatively charged by adsorbed hydroxyl ions and the decrease of the pH solution makes it positively charged by adsorbed hydrogen ions. Both the acidic and basic media leave an inverse impact on the adsorption efficiency because of the change of electrostatic forces between surface catalyst and dye molecules.
3.2.5. Effect of Temperature
The uptake of dye solution was increased with the rise in temperature from 5 to 30°C as shown in Figure 6. Equilibrium time was found to be reached in 60 min, at pH 5.5, and 50 mg L^{−1} of dye solution. The adsorption kinetics depends on the surface area of the adsorbent. The adsorption which increased with temperature indicates that the mobility of dye molecules increased with temperature, as did the number of dye molecules that interact with the active sites at TiO_{2}NPs. Moreover, the viscosity of dye solution reduces with the rise in temperature, increasing the rate of diffusion of dye molecules. These results also showed that the adsorption process was endothermic and spontaneous in nature. These results are in agreement with application of acidic treated pumice for the removal of azo dye from aqueous solution [48].
3.3. Analysis of Adsorption Kinetics
Numerous adsorption processes have been studied during the past 25 years. The diffusion control, mass transfer, chemical reactions, and particle diffusion are different kinds of mechanisms related to adsorption processes. The pseudofirstorder kinetic model, pseudosecondorder kinetic model, and intraparticle diffusion model were used for testing dynamic experimental data at 0.175 g of adsorbent and the different initial concentrations of RB 5 were 30, 40, 50, 60, 70, and 80 mg L^{−1} in the normal pH 5.5. The pseudofirstorder kinetic model of Lagergren is given as [49] where and (mg g^{−1}) are the amount of RB 5 adsorbed at equilibrium and at time (min), respectively, and (min^{−1}) is the adsorption rate constant.
The pseudosecondorder kinetic model can be expressed as [50] where (g mg^{−1} min^{−1}) is the rate constant of secondorder equation.
The initial adsorbent rate (mg g^{−1} min^{−1}) can be determined from and values using the following equation: The intraparticle diffusion model can be described as [51] where is the amount of dye adsorbed at time (min) and is the intraparticle diffusion rate constant (mg g^{−1} min^{−1/2}).
Moreover, the validity of these models was determined by calculating the standard deviation (R.S.D%) using where subscripts and refer to the experimental and calculated data and is the number of data points.
In adsorption process, there are two criteria, namely, the regression coefficients and predicted values that assess the validity of the order of adsorption [52]. The validities of these three kinetic models for all concentrations are checked and depicted in Figures 7, 8, and 9. The values of the parameters, correlation coefficient, and standard deviation obtained from these three kinetic models are all listed in Table 1. Among these, Figure 8 shows a good agreement with pseudosecondorder kinetic model. Table 1 presents the coefficients and R.S.D% of the pseudofirst and secondorder adsorption kinetic models and the intraparticle diffusion model. The values of for pseudosecondorder kinetic model are extremely high (all greater than 0.9989), but R.S.D values of the pseudosecondorder are smaller than those of the pseudofirstorder and the intraparticle diffusion model. Hence, this study suggests that the pseudosecondorder model better represents the adsorption kinetics. Consequently, the description of adsorption process could be the best by the pseudosecondorder kinetic. This also implies that the ratelimiting step may be the chemical adsorption. A similar phenomenon has been observed in the literature [53, 54]. The values of the pseudosecondorder rate constant, , were found to decrease from 1.32 × 10^{−2} to 1.2 × 10^{−3} g mg^{−1} min^{−1}, for an increase in the concentration solution of dye solution from 30 to 80 g L^{−1}.

Table 2 shows the values of adsorption rate constant at the following concentrations (30, 40, 50, and 60 mg L^{−1}), was found to increase from 19.142, 9.736, 1.611, and 0.435 to 130.857, 43.238, 9.859, and 1.370 L g^{−1}, for an increase in the solution temperature of 278.14 to 303.14 K, respectively.

3.4. Analysis of Adsorption Isotherm
The relationship between the amount of RB 5 dye adsorbed onto the adsorbent surface and the remaining RB 5 concentration in the aqueous phase at equilibrium can be observed by the equilibrium adsorption isotherm analysis as shown in the investigation of the effect of initial concentration of dye. This relationship which is shown in Figure 10 indicates that the adsorption capacity RB 5 dye on the surface of TiO_{2}NPs increases with the equilibrium concentration of dye solution, progressively reaching saturation of the adsorbent. Adsorption isotherm curve indicates that adsorption phenomenon is represented by isotherms of type L which represent a monolayer adsorption until the saturation of active sites. The higher dye adsorption value reveals that the synthesized TiO_{2}NPs are well interconnected and the electrons are efficiently transported through the particles. This is consistent with the work reported by Kathirvel et al. [55].
The study employed the Langmuir and Freundlich models to describe the equilibrium adsorption. The expression of the Freundlich model [56] is In logarithmic form, where is the amount of RB 5 adsorbed at equilibrium time (mg g^{−1}) and is the equilibrium concentration of the dye solution (mg L^{−1}). and n are Freundlich isotherm constants which indicate capacity and intensity of the adsorption, respectively.
Freundlich [ = 0.9578] is not as adequate as Langmuir model [ = 0.9724]. The values of and were calculated from the slope and intercept of the plot versus (Figure 11). The values of and obtained are shown in Table 3. From value physical adsorption is unfavorable because the value of is not in the range 1 < < 10 [57].

The Langmuir isotherm is expressed as [58] where (mg g^{−1}) is the maximum amount of RB 5 per unit weight of TiO_{2}NPs to form complete monolayer coverage on the surface bound at high equilibrium RB 5 concentration and is Langmuir constant related to the affinity of binding sites (L mg^{−1}). represents a particle limiting adsorption capacity when the surface is fully covered with dye molecules and assists in the comparison of adsorption performance. and are calculated from the slope and intercept of the straight line of the plot of 1/ versus 1/ as shown in Figure 12.
Parameters of the Langmuir and Freundlich isotherms are computed in Table 4. Langmuir isotherm fits quite well with the experimental adsorption data correlation coefficient (), whereas the low shows poor agreement of the Freundlich isotherm with the experimental data. Calculated maximum capacities () are close to maximum capacities obtained at equilibrium (Table 3).

Furthermore, the essential characteristic of the Langmuir isotherm can be expressed by a dimensionless separation factor called equilibrium parameter [59] . It is also evaluated in this study and is determined from the relation where is the Langmuir constant (mL g^{−1}) and is the initial dye concentration (mg L^{−1}). Parameter indicates the shape of isotherm as shown in Table 4.
value between 0 and 1 indicates a favorable adsorption. The values of between 0 and 1 indicate a favorable chemical adsorption. The results show that, for Langmuir isotherm, the value of is found to be 0.042605, suggesting that the prepared TiO_{2}NPs are favorable for adsorption of RB 5 under the conditions used in this study.
The fact that the Langmuir isotherm fits the experimental data very well may be due to homogenous distribution of active sites on the TiO_{2}NPs surface, since the Langmuir equation assumes that the surface of catalyst is homogeneous [60].
3.5. Analysis of Adsorption Thermodynamic
The thermodynamic parameters should be properly evaluated because they provide in depth information regarding the inherent energetic changes associated with adsorption. Free energy of adsorption (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) changes were calculated in this study to predict the process of adsorption. Determination of the thermodynamic parameters is independent of the Langmuir equilibrium adsorption constant, . The van’t Hoff equation is used to evaluate the variation of equilibrium adsorption constant with temperature [61]. The integrated form of this equation is given as Gibbs free energy change of adsorption () was calculated as −6.815, −8.166, −9.009, −10.610, −11.346 and −12.264 k J mol^{−1 }at 278.14, 283.14, 288.14, 293.14, 298.14 and 303.14 K, respectively onto the synthesized TiO_{2}NPs at concentration was 30 mg L^{−1}. The negative values indicated that the adsorption of RB 5 onto TiO2NPs was thermodynamically feasible and spontaneous. The enthalpy (ΔH°) and entropy () changes were determined as 54.248 k J mol^{−1} and 26.509 × 10^{3} J mol^{−1} K^{−1} from versus plot (Figure 13). The positive value of confirmed the endothermic character of the adsorption process. The positive values of also revealed the increase of randomness at the solidliquid interface during the adsorption of RB 5 onto the TiO_{2}NPs. The low value of indicated that no remarkable change on entropy occurs. Similar results on RB 5 as compared to other materials [62] indicated that the adsorption of RB 5 was feasible, spontaneous, and endothermic. Thus results show that the adsorbents can be used for the treatment of aqueous solutions as an alternative lowcost adsorbent.
4. Conclusions
The synthesized TiO_{2}NPs are a wellknown adsorbent that can be used to remove azo dyes such as RB 5. Among the kinetic models, the pseudosecondorder kinetic model was considered the best to explain the behavior of the adsorption process because the average of pseudosecondorder is the highest among other models (pseudofirstorder average = 0.9739, pseudosecondorder average = 0.98545, and intraparticle diffusion average = 0.9304). The extent of RB 5 adsorption on TiO_{2} increases along with an increase of initial RB 5 concentration. Freundlich and Langmuir isotherm models have been found to be suitable for the description of adsorption. The synthesized catalyst has been found to have a Langmuir monolayer adsorption capacity of 88.495 mg g^{−1} at normal pH 5.5 and 30°C. The Langmuir model fitted the experimental data better than Freundlich model indicating that the adsorption tends to monolayer adsorption. The dimensionless separation factor confirms that the adsorption process certainly involves chemical adsorption. The pH of the zero point charge (pH_{zpc}) for the adsorption process was determined to be 6. The results demonstrated that the prepared TiO_{2}NPs are a promising adsorbent for the removal of RB 5 dye from aqueous solutions. From the results of thermodynamic parameters, the negative values indicated that the adsorption of RB 5 onto TiO_{2}NPs was thermodynamically feasible and spontaneous. The kinetic studies showed that the contact time was suitable for technological applications. Consequently, fundamentally the outlook is promising that the prepared TiO_{2}NPs have higher potential of removing the most significant amounts of azo dyes from aqueous solutions. Moreover, the adsorbate and adsorbent ratio provides an economical way to produce expensive semiconductor material support and it is convenient for the detoxification of pollutants.
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Acknowledgments
This paper was supported by Advanced Lab of Physical Chemistry, University of Babylon, Hilla, Iraq. The authors also acknowledge Dr. Fadhil Mohsen’s technical assistance and the support they received from the Iraqi Ministry of Science and Technology.
References
 L. Chengtang, X. Hui, L. Huaming, L. Ling, X. Li, and Y. Zhixiang, “Efficient degradation of methylene blue dye by catalytic oxidation using the Na_{8}Nb_{6}O_{19}·13H_{2}O/H_{2}O_{2} system,” Korean Journal of Chemical Engineering, vol. 28, no. 4, pp. 1126–1132, 2011. View at: Google Scholar
 S. A. Ong, E. Toorisaka, M. Hirata, and T. Hano, “Biodegradation of redox dye methylene blue by upflow anaerobic sludge blanket reactor,” Journal of Hazardous Materials B, vol. 124, no. 1–3, pp. 88–94, 2005. View at: Publisher Site  Google Scholar
 A. K. Golder, N. Hridaya, A. N. Samanta, and S. Ray, “Electrocoagulation of methylene blue and eosin yellowish using mild steel electrodes,” Journal of Hazardous Materials, vol. 127, no. 1–3, pp. 134–140, 2005. View at: Publisher Site  Google Scholar
 I. Fatimah, S. Wang, and D. Wulandari, “ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue,” Applied Clay Science, vol. 53, no. 4, pp. 553–560, 2011. View at: Publisher Site  Google Scholar
 G. Muthuraman, T. T. Teng, C. P. Leh, and I. Norli, “Extraction and recovery of methylene blue from industrial wastewater using benzoic acid as an extractant,” Journal of Hazardous Materials, vol. 163, no. 1, pp. 363–369, 2009. View at: Publisher Site  Google Scholar
 M. Bielska and K. Prochaska, “Dyes separation by means of crossflow ultrafiltration of micellar solutions,” Dyes and Pigments, vol. 74, no. 2, pp. 410–415, 2007. View at: Publisher Site  Google Scholar
 A. M. M. Vargas, A. L. Cazetta, M. H. Kunita, T. L. Silva, and V. C. Almeida, “Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models,” Chemical Engineering Journal, vol. 168, no. 2, pp. 722–730, 2011. View at: Publisher Site  Google Scholar
 A. L. Ahmad, M. M. Loh, and J. A. Aziz, “Preparation and characterization of activated carbon from oil palm wood and its evaluation on methylene blue adsorption,” Dyes and Pigments, vol. 75, no. 2, pp. 263–272, 2007. View at: Publisher Site  Google Scholar
 X. Han, W. Wang, and X. Ma, “Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf,” Chemical Engineering Journal, vol. 171, no. 1, pp. 1–8, 2011. View at: Publisher Site  Google Scholar
 S. Chatterjee, S.R. Lim, and S. H. Woo, “Removal of reactive black 5 by zerovalent iron modified with various surfactants,” Chemical Engineering Journal, vol. 160, no. 1, pp. 27–32, 2010. View at: Publisher Site  Google Scholar
 Y. Yao, F. Xu, M. Chen, Z. Xu, and Z. Zhu, “Adsorption behavior of methylene blue on carbon nanotubes,” Bioresource Technology, vol. 101, no. 9, pp. 3040–3046, 2010. View at: Publisher Site  Google Scholar
 B. H. Hameed, A. T. M. Din, and A. L. Ahmad, “Adsorption of methylene blue onto bamboobased activated carbon: kinetics and equilibrium studies,” Journal of Hazardous Materials, vol. 141, no. 3, pp. 819–825, 2007. View at: Publisher Site  Google Scholar
 I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, “Adsorption of basic dye on highsurfacearea activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies,” Journal of Hazardous Materials, vol. 154, no. 1–3, pp. 337–346, 2008. View at: Publisher Site  Google Scholar
 S. Altenor, B. Carene, E. Emmanuel, J. Lambert, J.J. Ehrhardt, and S. Gaspard, “Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation,” Journal of Hazardous Materials, vol. 165, no. 1–3, pp. 1029–1039, 2009. View at: Publisher Site  Google Scholar
 A. A. Attia, B. S. Girgis, and N. A. Fathy, “Removal of methylene blue by carbons derived from peach stones by H_{3}PO_{4} activation: batch and column studies,” Dyes and Pigments, vol. 76, no. 1, pp. 282–289, 2008. View at: Publisher Site  Google Scholar
 B. H. Hameed, A. L. Ahmad, and K. N. A. Latiff, “Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust,” Dyes and Pigments, vol. 75, no. 1, pp. 143–149, 2007. View at: Publisher Site  Google Scholar
 T. C. Chandra, M. M. Mirna, Y. Sudaryanto, and S. Ismadji, “Adsorption of basic dye onto activated carbon prepared from durian shell: studies of adsorption equilibrium and kinetics,” Chemical Engineering Journal, vol. 127, no. 1–3, pp. 121–129, 2007. View at: Publisher Site  Google Scholar
 I. A. W. Tan, B. H. Hameed, and A. L. Ahmad, “Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon,” Chemical Engineering Journal, vol. 127, no. 1–3, pp. 111–119, 2007. View at: Publisher Site  Google Scholar
 L. C. A. Oliveira, E. Pereira, I. R. Guimaraes et al., “Preparation of activated carbons from coffee husks utilizing FeCl_{3} and ZnCl_{2} as activating agents,” Journal of Hazardous Materials, vol. 165, no. 1–3, pp. 87–94, 2009. View at: Publisher Site  Google Scholar
 N. Kannan and M. M. Sundaram, “Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study,” Dyes and Pigments, vol. 51, no. 1, pp. 25–40, 2001. View at: Publisher Site  Google Scholar
 M. N. Alaya, M. A. Hourieh, A. M. Youssef, and F. ElSejariah, “Adsorption properties of activated carbons prepared from olive stones by chemical and physical activation,” Adsorption Science and Technology, vol. 18, no. 1, pp. 27–42, 2000. View at: Google Scholar
 A. Aygün, S. YenisoyKarakaş, and I. Duman, “Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties,” Microporous and Mesoporous Materials, vol. 66, no. 23, pp. 189–195, 2003. View at: Publisher Site  Google Scholar
 R. L. Tseng, S. K. Tseng, and F. C. Wu, “Preparation of high surface area carbons from Corncob with KOH etching plus CO_{2} gasification for the adsorption of dyes and phenols from water,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 279, no. 1–3, pp. 69–78, 2006. View at: Publisher Site  Google Scholar
 T. Robinson, G. McMullan, R. Marchant, and P. Nigam, “Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative,” Bioresource Technology, vol. 77, no. 3, pp. 247–255, 2001. View at: Publisher Site  Google Scholar
 J. He, S. Hong, L. Zhang, F. Gan, and Y. S. Ho, “Equilibrium and thermodynamic parameters of adsorption of methylene blue onto rectorite,” Fresenius Environmental Bulletin A, vol. 19, no. 11, pp. 2651–2656, 2010. View at: Google Scholar
 Z. Xie, Y. Zhang, X. Liu et al., “Visible light photoelectrochemical properties of Ndoped TiO_{2} nanorod arrays from TiN,” Journal of Nanomaterials, vol. 2013, Article ID 930950, 8 pages, 2013. View at: Publisher Site  Google Scholar
 X. Xin, J. Yang, R. Feng et al., “Preparation, characterization and adsorption performance of cetyl pyridine bromide modified bentonites,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 22, no. 1, pp. 42–47, 2012. View at: Publisher Site  Google Scholar
 H. Nishikiori, W. Qian, M. A. ElSayed, N. Tanaka, and T. Fujii, “Change in titania structure from amorphousness to crystalline increasing photoinduced electrontransfer rate in dyetitania system,” Journal of Physical Chemistry C, vol. 111, no. 26, pp. 9008–9011, 2007. View at: Publisher Site  Google Scholar
 M. CerónRivera, M. M. DávilaJiménez, and M. P. ElizaldeGonzález, “Degradation of the textile dyes basic yellow 28 and Reactive black 5 using diamond and metal alloys electrodes,” Chemosphere, vol. 55, no. 1, pp. 1–10, 2004. View at: Publisher Site  Google Scholar
 C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout, and J. L. Gole, “Enhanced nitrogen doping in TiO_{2} nanoparticles,” Nano Letters, vol. 3, no. 8, pp. 1049–1051, 2003. View at: Publisher Site  Google Scholar
 S. Abdul Rashid, S. H. Othman, T. I. Mohd Ghazi, and N. Abdullah, “Fedoped TiO_{2} nanoparticles produced via MOCVD: synthesis, characterization, and photocatalytic activity,” Journal of Nanomaterials, vol. 2011, Article ID 571601, 11 pages, 2011. View at: Publisher Site  Google Scholar
 Z. Zhou, Y. Ding, X. Zu, and Y. Deng, “ZnO spheres and nanorods formation: their dependence on agitation in solution synthesis,” Journal of Nanoparticle Research, vol. 13, no. 4, pp. 1689–1696, 2011. View at: Publisher Site  Google Scholar
 S. Khan, I. A. Qazi, I. Hashmi, M. A. Awan, and Z. NajumusSehar Sadaf, “Synthesis of silverdoped titanium TiO_{2} powdercoated surfaces and its ability to inactivate Pseudomonas aeruginosa and Bacillus subtilis,” Journal of Nanomaterials, vol. 2013, Article ID 531010, 8 pages, 2013. View at: Publisher Site  Google Scholar
 Y. Liu, Y. Jiao, F. Qu, L. Gong, and X. Wu, “Facile synthesis of templateinduced SnO_{2} nanotubes,” Journal of Nanomaterials, vol. 2013, Article ID 610964, 6 pages, 2013. View at: Publisher Site  Google Scholar
 E. K. Ylhäinen, M. R. Nunes, A. J. Silvestre, and O. C. Monteiro, “Synthesis of titanate nanostructures using amorphous precursor material and their adsorption/photocatalytic properties,” Journal of Materials Science, vol. 47, no. 10, pp. 4305–4312, 2012. View at: Publisher Site  Google Scholar
 J. Huang, Y. Cao, Z. Deng, and H. Tong, “Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment,” Journal of Solid State Chemistry, vol. 184, no. 3, pp. 712–719, 2011. View at: Publisher Site  Google Scholar
 C. Wang, H. Liu, and Y. Qu, “TiO_{2}based photocatalytic process for purification of polluted water: bridging fundamentals to applications,” Journal of Nanomaterials, vol. 2013, Article ID 319637, 14 pages, 2013. View at: Google Scholar
 S. Das, P. V. Kamat, S. Padmaja, V. Au, and S. A. Madison, “Free radical induced oxidation of the azo dye acid yellow 9,” Journal of the Chemical Society, vol. 2, no. 6, pp. 1219–1223, 1999. View at: Google Scholar
 Y. Yang, D. T. Wyatt II, and M. Bahorsky, “Decolorization of dyes using UV/H_{2}O_{2} photochemical oxidation,” Textile Chemist and Colorist, vol. 30, no. 4, pp. 27–35, 1998. View at: Google Scholar
 M. Toor and B. Jin, “Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye,” Chemical Engineering Journal, vol. 187, pp. 79–88, 2012. View at: Publisher Site  Google Scholar
 M. K. Aroua, S. P. P. Leong, L. Y. Teo, C. Y. Yin, and W. M. A. W. Daud, “Realtime determination of kinetics of adsorption of lead(II) onto palm shellbased activated carbon using ion selective electrode,” Bioresource Technology, vol. 99, no. 13, pp. 5786–5792, 2008. View at: Publisher Site  Google Scholar
 R. Katal, M. S. Baei, H. T. Rahmati, and H. Esfandian, “Kinetic, isotherm and thermodynamic study of nitrate adsorption from aqueous solution using modified rice husk,” Journal of Industrial and Engineering Chemistry, vol. 18, no. 1, pp. 295–302, 2012. View at: Publisher Site  Google Scholar
 M. R. Unnithan, V. P. Vinod, and T. S. Anirudhan, “Synthesis, characterization, and application as a chromium(VI) adsorbent of aminemodified polyacrylamidegrafted coconut coir pith,” Industrial and Engineering Chemistry Research, vol. 43, no. 9, pp. 2247–2255, 2004. View at: Google Scholar
 M. Jain, V. K. Garg, and K. Kadirvelu, “Adsorption of hexavalent chromium from aqueous medium onto carbonaceous adsorbents prepared from waste biomass,” Journal of Environmental Management, vol. 91, no. 4, pp. 949–957, 2010. View at: Publisher Site  Google Scholar
 F. Gode and E. Pehlivan, “Removal of Cr(VI) from aqueous solution by two Lewatitanion exchange resins,” Journal of Hazardous Materials, vol. 119, no. 1–3, pp. 175–182, 2005. View at: Publisher Site  Google Scholar
 P. A. Kumar, S. Chakraborty, and M. Ray, “Removal and recovery of chromium from wastewater using short chain polyaniline synthesized on jute fiber,” Chemical Engineering Journal, vol. 141, no. 1–3, pp. 130–140, 2008. View at: Publisher Site  Google Scholar
 F. Hussein, “Photochemical treatments of textile industries wastewater,” in Advance in Treating Textile Effluent, P. J. Hauser, Ed., pp. 117–144, InTech, 2010. View at: Google Scholar
 M. R. Samarphandi, M. Zarrabi, M. N. sepehr, A. Amrane, G. H. Safari, and S. Bashiri, “Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solution: kinetic, equilibrium and thermodynamic studies,” Environmental Health Science and Engineering, vol. 9, no. 5, pp. 1–10, 2012. View at: Google Scholar
 N. Ghasemi, S. Mirali, M. Ghasemi, S. Mashhadi, and M. H. Tarraf, “Adsorption isotherms and kinetics studies for the removal of Pb(II) from aqueous solutions using lowcost adsorbent,” in Proceedings of the International Conference on Environment Science and Engineering (IPCBEE '12), vol. 32, pp. 79–83, 2012. View at: Google Scholar
 Y. S. Ho and G. McKay, “Pseudosecond order model for sorption processes,” Process Biochemistry, vol. 34, no. 5, pp. 451–465, 1999. View at: Publisher Site  Google Scholar
 B. Osman, A. Kara, and N. Beşirli, “Immobilization of glucoamylase onto lewis metal ion chelated magnetic affinity sorbent: kinetic, isotherm and thermodynamic studies,” Journal of Macromolecular Science A: Pure and Applied Chemistry, vol. 48, no. 5, pp. 387–399, 2011. View at: Publisher Site  Google Scholar
 F. B.O. Daoud, S. Kaddour, and T. Sadoun, “Adsorption of cellulase Aspergillus niger on a commercial activated carbon: kinetics and equilibrium studies,” Colloids and Surfaces B: Biointerfaces, vol. 75, no. 1, pp. 93–99, 2010. View at: Publisher Site  Google Scholar
 W. Plazinski, W. Rudzinski, and A. Plazinska, “Theoretical models of sorption kinetics including a surface reaction mechanism: a review,” Advances in Colloid and Interface Science, vol. 152, no. 12, pp. 2–13, 2009. View at: Publisher Site  Google Scholar
 Y. G. Zhao, H. Y. Shen, S. D. Pan, and M. Q. Hu, “Synthesis, characterization and properties of ethylenediaminefunctionalized Fe_{3}O_{4} magnetic polymers for removal of Cr(VI) in wastewater,” Journal of Hazardous Materials, vol. 182, no. 1–3, pp. 295–302, 2010. View at: Publisher Site  Google Scholar
 S. Kathirvel, H.S. Chen, C. Su, H.H. Wang, C.Y. Li, and W.R. Li, “Preparation of smooth surface TiO_{2} photoanode for high energy conversion efficiency in dyesensitized solar cells,” Journal of Nanomaterials, vol. 2013, Article ID 610964, 6 pages, 2013. View at: Publisher Site  Google Scholar
 A. Kara, B. Acemioðlu, M. H. Alma, and M. Cebe, “Adsorption of Cr(III), Ni(II), Zn(II), Co(II) ýons onto phenolated wood resin,” Applied Polymer Science, vol. 101, pp. 2838–2846, 2006. View at: Google Scholar
 A. Üçer, A. Uyanık, and Ş. F. Aygün, “Adsorption of Cu (II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon,” Journal of Separation and Purification Technology, vol. 47, pp. 113–118, 2006. View at: Google Scholar
 G. Asgari, B. Roshani, and G. Ghanizadeh, “The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone,” Journal of Hazardous Materials, vol. 217218, pp. 123–132, 2012. View at: Publisher Site  Google Scholar
 C. Namasivayam and D. Kavitha, “Removal of congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste,” Dyes and Pigments, vol. 54, no. 1, pp. 47–58, 2002. View at: Publisher Site  Google Scholar
 M. Doǧan, M. Alkan, and Y. Onganer, “Adsorption of methylene blue from aqueous solution onto perlite,” Water, Air, and Soil Pollution, vol. 120, no. 34, pp. 229–248, 2000. View at: Google Scholar
 A. Kara, L. Uzun, N. Beşirli, and A. Denizli, “Poly(ethylene glycol dimethacrylatenvinyl imidazole) beads for heavy metal removal,” Journal of Hazardous Materials, vol. 106, no. 23, pp. 93–99, 2004. View at: Publisher Site  Google Scholar
 E. Kalkan, H. Nadaroğlu, N. Celebi, and G. Tozsin, “Removal of textile dye reactive black 5 from aqueous solution by adsorption on laccasemodified silica fume,” Desalination and Water Treatment, 2013. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2014 Majeed A. Shaheed and Falah H. Hussein. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.