Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 350579, 14 pages
http://dx.doi.org/10.1155/2014/350579
Research Article

In Vitro and In Vivo Evaluation of Sol-Gel Derived TiO2 Coatings Based on a Variety of Precursors and Synthesis Conditions

1Electron Microscope Laboratory, University of Environmental and Life Sciences Wroclaw, Ulica Kożuchowska 5B, 50-631 Wroclaw, Poland
2Wrocławskie Centrum Badań EIT+, Stablowicka 147 Street, 54-066 Wroclaw, Poland
3Institute of Materials Science and Applied Mechanics, Wroclaw University of Technology, Ulica Smoluchowskiego 25, 50-370 Wroclaw, Poland
4Division of Biomedical Engineering and Experimental Mechanics, Wroclaw University of Technology, Ulica Lukasiewicza 7/9, 50-371 Wroclaw, Poland

Received 19 February 2014; Revised 17 April 2014; Accepted 5 May 2014; Published 1 June 2014

Academic Editor: Zhongkui Hong

Copyright © 2014 Krzysztof Marycz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Anderson, A. Rodriguez, and D. T. Chang, “Foreign body reaction to biomaterials,” Seminars in Immunology, vol. 20, no. 2, pp. 86–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Buser, B. Hoffmann, J. Bernard, A. Lussi, D. Mettler, and R. K. Schenk, “Evaluation of filling materials in membrane-protected bone defects-a comparative histomorphometric study in the mandible of miniature pigs,” Clinical Oral Implants Research, vol. 9, no. 3, pp. 137–150, 1998. View at Google Scholar · View at Scopus
  3. K. Gotfredsen, T. Berglundh, and J. Lindhe, “Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits,” Clinical Implant Dentistry and Related Research, vol. 2, no. 3, pp. 120–128, 2000. View at Google Scholar · View at Scopus
  4. Y. T. Sul, C. Johansson, E. Byon, and T. Albrektsson, “The bone response of oxidized bioactive and non-bioactive titanium implants,” Biomaterials, vol. 26, no. 33, pp. 6720–6730, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Eisenbarth, “Biomaterials,” in Kirk-Othmer Encyclopedia of Chemical Technology, Kirk-Othmer, Ed., vol. 7, Wiley-Blackwell, New Jersey, NJ, USA, 2011. View at Google Scholar
  6. M. Díaz, P. Sevilla, A. M. Galán, G. Escolar, E. Engel, and F. J. Gil, “Evaluation of ion release, cytotoxicity, and platelet adhesion of electrochemical anodized 316 L stainless steel cardiovascular stents,” Journal of Biomedical Materials Research B: Applied Biomaterials, vol. 87, no. 2, pp. 555–561, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. R. Paital and N. B. Dahotre, “Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies,” Materials Science and Engineering R: Reports, vol. 66, no. 1–3, pp. 1–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Simchi, E. Tamjid, F. Pishbin, and A. R. Boccaccini, “Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 7, no. 1, pp. 22–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. P. Chiriac, I. Neamtu, L. E. Nita, and M. T. Nistor, “Sol gel method performed for biomedical products implementation,” Mini-Reviews in Medicinal Chemistry, vol. 10, no. 11, pp. 990–1013, 2010. View at Google Scholar · View at Scopus
  10. D. Wang and G. P. Bierwagen, “Sol-gel coatings on metals for corrosion protection,” Progress in Organic Coatings, vol. 64, no. 4, pp. 327–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Oh, C. Daraio, L. Chen, T. R. Pisanic, R. R. Fiñones, and S. Jin, “Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes,” Journal of Biomedical Materials Research A, vol. 78, no. 1, pp. 97–103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Satsangi, N. Satsangi, R. Glover, R. K. Satsangi, and J. L. Ong, “Osteoblast response to phospholipid modified titanium surface,” Biomaterials, vol. 24, no. 25, pp. 4585–4589, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. O. V. Salata, “Applications of nanoparticles in biology and medicine,” Journal of Nanobiotechnology, vol. 2, pp. 1–3, 2004. View at Publisher · View at Google Scholar
  14. T. G. Koch, L. C. Berg, and D. H. Betts, “Current and future regenerative medicine-Principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine,” Canadian Veterinary Journal, vol. 50, no. 2, pp. 155–165, 2009. View at Google Scholar · View at Scopus
  15. M. A. González, E. Gonzalez-Rey, L. Rico, D. Büscher, and M. Delgado, “Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses,” Gastroenterology, vol. 136, no. 3, pp. 978–989, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. N. Svendsen, “Back to the future: how human induced pluripotent stem cells will transform regenerative medicine,” Human Molecular Genetics, vol. 15, pp. 32–38, 2013. View at Google Scholar
  17. C. Nombela-Arrieta, J. Ritz, and L. E. Silberstein, “The elusive nature and function of mesenchymal stem cells,” Nature Reviews Molecular Cell Biology, vol. 12, no. 2, pp. 126–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. P. C. Baer and H. Geiger, “Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity,” Stem Cells International, vol. 2012, Article ID 812693, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. M. C. Advincula, D. Petersen, F. Rahemtulla, R. Advincula, and J. E. Lemons, “Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium alloy implants,” Journal of Biomedical Materials Research B: Applied Biomaterials, vol. 80, no. 1, pp. 107–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Shanbhag, H. E. Rubash, and J. J. Jacobs, Eds., Joint Replacement and Bone Resorption: Pathology, Biomaterials, and Clinical Practice, Taylor & Francis Group, Boca Raton, Fla, USA, 2006.
  21. T. T. Glant, J. J. Jacobs, G. Molnar, A. S. Shanbhag, M. Valyon, and J. O. Galante, “Bone resorption activity of particulate-stimulated macrophages,” Journal of Bone and Mineral Research, vol. 8, no. 9, pp. 1071–1079, 1993. View at Google Scholar · View at Scopus
  22. J. Grzesiak, K. Marycz, J. Czogala, K. Wrzeszcz, and J. Nicpon, “Comparison of behavior, morphology and morphometry of equine and canine adipose derived mesenchymal stem cells in culture,” International Journal of Morphology, vol. 29, no. 3, pp. 1012–1017, 2011. View at Google Scholar · View at Scopus
  23. J. Grzesiak, K. Marycz, K. Wrzeszcz, and J. Czogala, “Isolation and morphological characterisation of ovine adipose-derived mesenchymal stem cells in culture,” International Journal of Stem Cells, vol. 4, no. 2, pp. 99–104, 2011. View at Google Scholar · View at Scopus
  24. R. H. Lee, B. Kim, I. Choi et al., “Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue,” Cellular Physiology and Biochemistry, vol. 14, no. 4–6, pp. 311–324, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Marędziak, K. Marycz, A. Śmieszek, D. Lewandowski, and N. Y. Toker, “The influence of static magnetic fields on canine and equine stem cells derived from adipose tissue,” In Vitro Cellular & Developmental Biology. Animal, 2014. View at Publisher · View at Google Scholar
  26. O. D. Schneider, D. Mohn, R. Fuhrer et al., “Biocompatibility and bone formation of flexible, cotton wool-like PLGA/calcium phosphate nanocomposites in sheep,” The Open Orthopaedics Journal, vol. 5, pp. 63–71, 2011. View at Publisher · View at Google Scholar
  27. T. Kitsugi, T. Nakamura, M. Oka et al., “Bone bonding behavior of titanium and its alloys when coated with titanium oxide (TiO2) and titanium silicate (Ti5Si3),” Journal of Biomedical Materials Research, vol. 32, no. 2, pp. 149–156, 1996. View at Google Scholar
  28. H. J. Erli, M. Rüger, C. Ragoß et al., “The effect of surface modification of a porous TiO2/perlite composite on the ingrowth of bone tissue in vivo,” Biomaterials, vol. 27, no. 8, pp. 1270–1276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Urbański, S. Dragan, E. Gębarowska et al., “Preliminary evaluation of selected biologic properties of TiO2 and SiO2 layers on metallic substrates,” Engineering of Biomaterials, vol. 13, no. 96–98, pp. 129–133, 2010. View at Google Scholar
  30. S. Kačiulis, G. Mattogno, A. Napoli et al., “Surface analysis of biocompatible coatings on titanium,” Journal of Electron Spectroscopy and Related Phenomena, vol. 95, no. 1, pp. 61–69, 1998. View at Google Scholar · View at Scopus
  31. J. Gallo, M. Raška, F. Mrázek, and M. Peťek, “Bone remodeling, particle disease and individual susceptibility to periprosthetic osteolysis,” Physiological Research, vol. 57, no. 3, pp. 339–349, 2008. View at Google Scholar · View at Scopus
  32. A. S. Shanbhag, J. J. Jacobs, J. Black, J. O. Galante, and T. T. Glant, “Cellular mediators secreted by interfacial membranes obtained at revision total hip arthroplasty,” Journal of Arthroplasty, vol. 10, no. 4, pp. 498–506, 1995. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Contreras, H. Sahlin, and J. A. Frangos, “Titanate biomaterials with enhanced antiinflammatory properties,” Journal of Biomedical Materials Research A, vol. 80, no. 2, pp. 480–485, 2007. View at Publisher · View at Google Scholar · View at Scopus