Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 468271, 11 pages
http://dx.doi.org/10.1155/2014/468271
Research Article

Improvement of Orange II Photobleaching by Moderate Ga3+ Doping of Titania and Detrimental Effect of Structural Disorder on Ga Overloading

1Material Chemistry Department, Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež, Czech Republic
2Department of Physics, Faculty of Science, J.E.Purkyně University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic

Received 7 August 2013; Revised 5 January 2014; Accepted 5 January 2014; Published 26 February 2014

Academic Editor: Do K. Kim

Copyright © 2014 Václav Štengl et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Y. Jung, S. B. Park, and H. D. Jang, “Phase control and photocatalytic properties of nano-sized titania particles by gas-phase pyrolysis of TiCl4,” Catalysis Communications, vol. 5, no. 9, pp. 491–497, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Hong, “VOCs degradation performance of TiO2 aerogel photocatalyst prepared in SCF drying,” Journal of Industrial and Engineering Chemistry, vol. 12, no. 6, pp. 918–925, 2006. View at Google Scholar · View at Scopus
  3. V. Štengl, V. Houšková, N. Murafa, and S. Bakardjieva, “Synthesis of mesoporous titania by homogeneous hydrolysis of titania oxo-sulfate in the presence of cationic and anionic surfactants,” Ceramics, vol. 54, no. 4, pp. 368–378, 2010. View at Google Scholar · View at Scopus
  4. V. Štengl, F. Opluštil, and T. Němec, “In3+-doped TiO2 and TiO2/In2S3 Nanocomposite for photocatalytic and stoichiometric degradations,” Photochemistry and Photobiology, vol. 88, no. 2, pp. 265–276, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Mattsson, C. Lejon, S. Bakardjieva, V. Štengl, and L. Österlund, “Characterisation, phase stability and surface chemical properties of photocatalytic active Zr and Y co-doped anatase TiO2 nanoparticles,” Journal of Solid State Chemistry, vol. 199, pp. 212–223, 2013. View at Google Scholar
  6. V. Štengl, V. Houškovǎ, S. Bakardjieva, N. Murafa, and P. Bezdička, “Niobium and tantalum doped titania particles,” Journal of Materials Research, vol. 25, no. 10, pp. 2015–2024, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Štengl, J. Velická, M. Maříková, and T. M. Grygar, “New generation photocatalysts: how tungsten influences the nanostructure and photocatalytic activity of TiO2in the UV and visible regions,” ACS Applied Materials and Interfaces, vol. 3, no. 10, pp. 4014–4023, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Štengl and S. Bakardjieva, “Molybdenum-doped anatase and its extraordinary photocatalytic activity in the degradation of Orange II in the UV and vis regions,” Journal of Physical Chemistry C, vol. 114, no. 45, pp. 19308–19317, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. N. Banerjee, S. W. Joo, and B. K. Min, “Photocatalytic degradation of organic dye by sol-gel-derived gallium-doped anatase titanium oxide nanoparticles for environmental remediation,” Journal of Nanomaterials, vol. 2012, Article ID 201492, 14 pages, 2012. View at Publisher · View at Google Scholar
  10. X. B. Li, Q. Liu, X. Y. Jiang et al., “Enhanced photocatalytic activity of Ga-N Co-doped anatase TiO2 for water decomposition to hydrogen,” International Journal of Electrochemical Science, vol. 7, no. 11, pp. 11519–11527, 2012. View at Google Scholar
  11. M. Hirano and T. Ito, “Titania solid solution nanoparticles co-doped with niobium and gallium,” Journal of the Ceramic Society of Japan, vol. 118, no. 1384, pp. 1170–1175, 2010. View at Google Scholar · View at Scopus
  12. S. Song, C. Wang, F. Hong, Z. He, Q. Cai, and J. Chen, “Gallium- and iodine-co-doped titanium dioxide for photocatalytic degradation of 2-chlorophenol in aqueous solution: role of gallium,” Applied Surface Science, vol. 257, no. 8, pp. 3427–3432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. P. L. Richardson, M. L. N. Perdigoto, W. Wang, and R. J. G. Lopes, “Heterogeneous photo-enhanced conversion of carbon dioxide to formic acid with copper- and gallium-doped titania nanocomposites,” Applied Catalysis B, vol. 132-133, no. 0, pp. 408–415, 2013. View at Google Scholar
  14. JCPDS, PDF 2 Database, Release 50, International Centre for Diffraction Data, Newtown Square, Pa, USA, 2000.
  15. ICSD, ICSD Database FIZ Karlsruhe, 2008.
  16. J. Środoń, V. A. Drits, D. K. McCarty, J. C. C. Hsieh, and D. D. Eberl, “Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations,” Clays and Clay Minerals, vol. 49, no. 6, pp. 514–528, 2001. View at Google Scholar · View at Scopus
  17. S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” Journal of the American Chemical Society, vol. 60, no. 2, pp. 309–319, 1938. View at Google Scholar · View at Scopus
  18. E. P. Barrett, L. G. Joyner, and P. P. Halenda, “The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms,” Journal of the American Chemical Society, vol. 73, no. 1, pp. 373–380, 1951. View at Google Scholar · View at Scopus
  19. A. A. Christy, O. M. Kvalheim, and R. A. Velapoldi, “Quantitative analysis in diffuse reflectance spectrometry: a modified Kubelka-Munk equation,” Vibrational Spectroscopy, vol. 9, no. 1, pp. 19–27, 1995. View at Google Scholar · View at Scopus
  20. Z. C. Orel, M. K. Gunde, and B. Orel, “Application of the Kubelka-Munk theory for the determination of the optical properties of solar absorbing paints,” Progress in Organic Coatings, vol. 30, no. 1-2, pp. 59–66, 1997. View at Google Scholar · View at Scopus
  21. V. Štengl, V. Houšková, S. Bakardjieva, N. Murafa, and V. Havlín, “Optically transparent titanium dioxide particles incorporated in poly(hydroxyethyl methacrylate) thin layers,” Journal of Physical Chemistry C, vol. 112, no. 50, pp. 19979–19985, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Štengl, V. Houškova, S. Bakardjieva, and N. Murafa, “Photocatalytic activity of boron-modified titania under UV and visible-light illumination,” ACS Applied Materials and Interfaces, vol. 2, no. 2, pp. 575–580, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Lachheb, E. Puzenat, A. Houas et al., “Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania,” Applied Catalysis B, vol. 39, no. 1, pp. 75–90, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. A. A. Sattar, “Composition dependence of some physical, magnetic and electrical properties of Ga substituted Mn-ferrites,” Journal of Materials Science, vol. 39, no. 2, pp. 451–455, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. R. C. Pullar, S. J. Penn, X. Wang, I. M. Reaney, and N. M. Alford, “Dielectric loss caused by oxygen vacancies in titania ceramics,” Journal of the European Ceramic Society, vol. 29, no. 3, pp. 419–424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Štengl and T. M. Grygar, “The simplest way to iodine-doped anatase for photocatalysts activated by visible light,” International Journal of Photoenergy, vol. 2011, Article ID 685935, 13 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Weidenthaler, “Pitfalls in the characterization of nanoporous and nanosized materials,” Nanoscale, vol. 3, no. 3, pp. 792–810, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Lowell and J. E. Shields, Powder Surface Area and Porosity, Chapman and Hall, London, UK, 1998.
  29. J. A. deBoer, The Shape of Capillaries in the Structure and Properties of Porous Materials, P. Eisenklam, London, UK, 1958.
  30. V. Štengl, V. Houšková, S. Bakardjieva, and N. Murafa, “Photocatalytic degradation of acetone and butane on mesoporous titania layers,” New Journal of Chemistry, vol. 34, no. 9, pp. 1999–2005, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. G.-S. Shao, X.-J. Zhang, and Z.-Y. Yuan, “Preparation and photocatalytic activity of hierarchically mesoporous-macroporous TiO2-xNx,” Applied Catalysis B, vol. 82, no. 3-4, pp. 208–218, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. P. A. Connor, K. D. Dobson, and A. James McQuillan, “Infrared spectroscopy of the TiO2/aqueous solution interface,” Langmuir, vol. 15, no. 7, pp. 2402–2408, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. G. V. Jere and C. C. Patel, “Infrared absorption studies on peroxy titanium sulphate,” Canadian Journal of Chemistry, vol. 40, no. 8, pp. 1576–1578, 1962. View at Google Scholar
  34. R. Nakamura, A. Imanishi, K. Murakoshi, and Y. Nakato, “In situ FTIR studies of pimary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions,” Journal of the American Chemical Society, vol. 125, no. 24, pp. 7443–7450, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Ignat, L. M. Revenco, A. R. Pascaru, and E. Popovici, “Functionalized zeolitic materials with photocatalytic properties,” Acta Chemica, vol. 19, pp. 21–34, 2011. View at Google Scholar
  36. M. Pal, U. Pal, J. M. G. Y. Jiménez, and F. Pérez-Rodríguez, “Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors,” Nanoscale Research Letters, vol. 7, article 1, pp. 1–12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Liu, C. Sun, H. G. Yang et al., “Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity,” Chemical Communications, vol. 46, no. 5, pp. 755–757, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. J.-H. Yi, C. Bernard, F. Variola et al., “Characterization of a bioactive nanotextured surface created by controlled chemical oxidation of titanium,” Surface Science, vol. 600, no. 19, pp. 4613–4621, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Chae, J. Lee, J. H. Jeong, and M. Kang, “Hydrogen production from photo splitting of water using the Ga-incorporated TiO(2)s prepared by a solvothermal method and their characteristics,” Bulletin of the Korean Chemical Society, vol. 30, no. 2, pp. 302–308, 2009. View at Google Scholar
  40. K. M. Reddy, S. V. Manorama, and A. R. Reddy, “Bandgap studies on anatase titanium dioxide nanoparticles,” Materials Chemistry and Physics, vol. 78, no. 1, pp. 239–245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Yuan and J. Xu, “Preparation, characterization and photocatalytic activity of nanometer SnO2,” International Journal of Chemical Engineering and Applications, vol. 1, no. 3, pp. 241–246, 2010. View at Google Scholar
  42. P. Mäkie, P. Persson, and L. Österlund, “Solar light degradation of trimethyl phosphate and triethyl phosphate on dry and water-precovered hematite and goethite nanoparticles,” The Journal of Physical Chemistry C, vol. 116, no. 28, pp. 14917–14929, 2012. View at Google Scholar
  43. E. Sanchez and T. Lopez, “Effect of the preparation method on the band gap of titania and platinum-titania sol-gel materials,” Materials Letters, vol. 25, no. 5-6, pp. 271–275, 1995. View at Google Scholar · View at Scopus
  44. N. Serpone, D. Lawless, and R. Khairutdinov, “Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization or direct transitions in this indirect semiconductor?” Journal of Physical Chemistry, vol. 99, no. 45, pp. 16646–16654, 1995. View at Google Scholar · View at Scopus
  45. D. S. Bhatkhande, V. G. Pangarkar, and A. A. Beenackers, “Photocatalytic degradation for environmental applications: a review,” Journal of Chemical Technology and Biotechnology, vol. 77, no. 1, pp. 102–116, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. S.-A. Lee, J.-Y. Hwang, J.-P. Kim, C.-R. Cho, W.-J. Lee, and S.-Y. Jeong, “Metal/insulator/semiconductor structure using Ga2O3 layer by plasma enhanced atomic layer deposition,” Journal of the Korean Physical Society, vol. 47, no. 2, pp. S292–S295, 2005. View at Google Scholar · View at Scopus
  47. V. Stengl, T. M. Grygar, J. Velická, J. Henych, and S. Bakardjieva, “Impact of Ge4+ ion as structural dopant of Ti4+ in anatase: crystallographic translation, photocatalytic behavior, and efficiency under UV and VIS irradiation,” Journal of Nanomaterials, vol. 2012, Article ID 252894, 11 pages, 2012. View at Publisher · View at Google Scholar
  48. V. Stengl, T. M. Grygar, J. Henych, and M. Kormunda, “Hydrogen peroxide route to Sn-doped titania photocatalysts,” Chemistry Central Journal, vol. 6, article 113, 2012. View at Publisher · View at Google Scholar
  49. M. Toyoda, Y. Nanbu, Y. Nakazawa, M. Hirano, and M. Inagaki, “Effect of crystallinity of anatase on photoactivity for methyleneblue decomposition in water,” Applied Catalysis B, vol. 49, no. 4, pp. 227–232, 2004. View at Publisher · View at Google Scholar · View at Scopus