Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 759038, 9 pages
http://dx.doi.org/10.1155/2014/759038
Research Article

The Nanomechanical and Tribological Properties of Restorative Dental Composites after Exposure in Different Types of Media

State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China

Received 24 April 2014; Accepted 23 June 2014; Published 8 July 2014

Academic Editor: Guang-Ping Zhang

Copyright © 2014 Hong-Yi Fan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Senawongse and P. Pongprueksa, “Surface roughness of nanofill and nanohybrid resin composites after polishing and brushing,” Journal of Esthetic and Restorative Dentistry, vol. 19, no. 5, pp. 265–273, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Oysaed and I. E. Ruyter, “Composites for use in posterior teeth: mechanical properties tested under dry and wet conditions,” Journal of Biomedical Materials Research, vol. 20, no. 2, pp. 261–271, 1986. View at Publisher · View at Google Scholar · View at Scopus
  3. J. G. Calais and K. J. Soderholm, “Influence of filler type and water exposure on flexural strength of experimental composite resins,” Journal of Dental Research, vol. 67, no. 5, pp. 836–840, 1988. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Wongkhantee, V. Patanapiradej, C. Maneenut, and D. Tantbirojn, “Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials,” Journal of Dentistry, vol. 34, no. 3, pp. 214–220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Gonçalves, J. D. N. Filho, J. G. A. Guimarães, L. T. Poskus, and E. M. da Silva, “Solubility, salivary sorption and degree of conversion of dimethacrylate-based polymeric matrixes,” Journal of Biomedical Materials Research B: Applied Biomaterials, vol. 85, no. 2, pp. 320–325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Kalachandra and T. W. Wilson, “Water sorption and mechanical properties of light-cured proprietary composite tooth restorative materials,” Biomaterials, vol. 13, no. 2, pp. 105–109, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. A. R. Curtis, A. C. Shortall, P. M. Marquis, and W. M. Palin, “Water uptake and strength characteristics of a nanofilled resin-based composite,” Journal of Dentistry, vol. 36, no. 3, pp. 186–193, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. G. Chadwick, J. F. McCabe, A. W. G. Walls, and R. Storer, “The effect of storage media upon the surface microhardness and abrasion resistance of three composites,” Dental Materials, vol. 6, no. 2, pp. 123–128, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. S. El-Safty, R. Akhtar, N. Silikas, and D. C. Watts, “Nanomechanical properties of dental resin-composites,” Dental Materials, vol. 28, no. 12, pp. 1292–1300, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Cayer-Barrioz, D. Mazuyer, A. Tonck, P. Kapsa, and A. Chateauminois, “Nanoscratch and friction: an innovative approach to understand the tribological behaviour of poly(amide) fibres,” Tribology International, vol. 39, no. 2, pp. 62–69, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Gao, S. Matsuya, M. Ohta, and J. Zhang, “Erosion process of light-cured and conventional glass ionomer cements in citrate buffer solution,” Dental Materials Journal, vol. 16, no. 2, pp. 170–179, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. J. W. Nicholson, B. J. Millar, B. Czarnecka, and H. Limanowska-Shaw, “Storage of polyacid-modified resin composites (“compomers”) in lactic acid solution,” Dental Materials, vol. 15, no. 6, pp. 413–416, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Lussi and T. Jaeggi, “Dental erosion in children,” Monographs in Oral Science, vol. 20, pp. 140–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Lambrechts, M. Braem, and G. Vanherle, “Buonocore memorial lecture: evaluation of clinical performance for posterior composite resins and dentin adhesives,” Operative Dentistry, vol. 12, no. 2, pp. 53–78, 1987. View at Google Scholar · View at Scopus
  15. A. U. J. Yap, X. Wang, X. Wu, and S. M. Chung, “Comparative hardness and modulus of tooth-colored restoratives: a depth-sensing microindentation study,” Biomaterials, vol. 25, no. 11, pp. 2179–2185, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. S. Sadjadi and N. Farhadyar, “Preparation and characterization of the hydrophilic nanocomposite coating based on epoxy resin and titanate on the glass substrate,” Journal of Nanoscience and Nanotechnology, vol. 9, no. 2, pp. 1172–1175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. U. Erdemir, E. Yildiz, and M. M. Eren, “Effects of sports drinks on color stability of nanofilled and microhybrid composites after long-term immersion,” Journal of Dentistry, vol. 40, supplement 2, pp. e55–e63, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Wu, E. E. Toth, J. F. Moffa, and J. A. Ellison, “Subsurface damage layer of in vivo worn dental composite restorations,” Journal of Dental Research, vol. 63, no. 5, pp. 675–680, 1984. View at Publisher · View at Google Scholar · View at Scopus
  19. K. F. Leinfelder, A. D. Wilder Jr., and L. C. Teixeira, “Wear rates of posterior composite resins,” The Journal of the American Dental Association, vol. 112, no. 6, pp. 829–833, 1986. View at Google Scholar · View at Scopus
  20. J. M. Powers and P. L. Fan, “Erosion of composite resins,” Journal of Dental Research, vol. 59, no. 5, pp. 815–819, 1980. View at Publisher · View at Google Scholar · View at Scopus
  21. G. van der Horst, I. Wesso, A. P. Burger, D. L. Dietrich, and S. R. Grobler, “Chemical analysis of cooldrinks and pure fruit juices—some clinical implications,” The South African Medical Journal, vol. 66, no. 20, pp. 755–758, 1984. View at Google Scholar · View at Scopus
  22. I. Khairoun, M. G. Boltong, F. C. M. Driessens, and J. A. Planell, “Some factors controlling the injectability of calcium phosphate bone cements,” Journal of Materials Science: Materials in Medicine, vol. 9, no. 8, pp. 425–428, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Asmussen, “Softening of BISGMA-based polymers by ethanol and by organic acids of plaque,” Scandinavian Journal of Dental Research, vol. 92, no. 3, pp. 257–261, 1984. View at Google Scholar · View at Scopus
  24. U. Örtengren, F. Andersson, U. Elgh, B. Terselius, and S. Karlsson, “Influence of pH and storage time on the sorption and solubility behaviour of three composite resin materials,” Journal of Dentistry, vol. 29, no. 1, pp. 35–41, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. W. M. Palin, G. J. P. Fleming, F. J. T. Burke et al., “The frictional coefficients and associated wear resistance of novel low-shrink resin-based composites,” Dental Materials, vol. 21, no. 12, pp. 1111–1118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Onat, “Mechanical and dry sliding wear properties of silicon carbide particulate reinforced aluminium-copper alloy matrix composites produced by direct squeeze casting method,” Journal of Alloys and Compounds, vol. 489, no. 1, pp. 119–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Ji, “A study of the interface strength between protein and mineral in biological materials,” Journal of Biomechanics, vol. 41, no. 2, pp. 259–266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Gao, B. Ji, I. L. Jäger, E. Arzt, and P. Fratzl, “Materials become insensitive to flaws at nanoscale: lessons from nature,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 5597–5600, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Ji and H. Gao, “Mechanical properties of nanostructure of biological materials,” Journal of the Mechanics and Physics of Solids, vol. 52, no. 9, pp. 1963–1990, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  30. H. Gao and B. Ji, “Modeling fracture in nanomaterials via a virtual internal bond method,” Engineering Fracture Mechanics, vol. 70, no. 14, pp. 1777–1791, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Moszner and S. Klapdohr, “Nanotechnology for dental composites,” International Journal of Nanotechnology, vol. 1, no. 1-2, pp. 130–156, 2004. View at Google Scholar · View at Scopus
  32. C. P. Turssi, J. R. Saad, S. L. Duarte Jr., and A. L. Rodrigues Jr., “Composite surfaces after finishing and polishing techniques,” American Journal of Dentistry, vol. 13, no. 3, pp. 136–138, 2000. View at Google Scholar · View at Scopus
  33. S. B. Mitra, D. Wu, and B. N. Holmes, “An application of nanotechnology in advanced dental materials,” Journal of the American Dental Association, vol. 134, no. 10, pp. 1382–1390, 2003. View at Publisher · View at Google Scholar · View at Scopus