Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014 (2014), Article ID 792102, 6 pages
http://dx.doi.org/10.1155/2014/792102
Research Article

Optical and Magnetic Properties of Fe Doped ZnO Nanoparticles Obtained by Hydrothermal Synthesis

1State Key Laboratory of Advanced Processing and Recycling Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2School of Science, Lanzhou University of Technology, Lanzhou 730050, China

Received 25 May 2014; Revised 13 June 2014; Accepted 16 June 2014; Published 3 July 2014

Academic Editor: Chee Kiang Ivan Tan

Copyright © 2014 Xiaojuan Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Ohno, “Making nonmagnetic semiconductors ferromagnetic,” Science, vol. 281, no. 5379, pp. 951–956, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. S. J. Pearton, D. P. Norton, M. P. Ivill et al., “ZnO doped with transition metal ions,” IEEE Transactions on Electron Devices, vol. 54, no. 5, pp. 1040–1048, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Moezzi, A. M. McDonagh, and M. B. Cortie, “Zinc oxide particles: synthesis, properties and applications,” Chemical Engineering Journal, vol. 185-186, pp. 1–22, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Chu, Y. Masuda, T. Ohji, and K. Kato, “Formation and photocatalytic application of ZnO nanotubes using aqueous solution,” Langmuir, vol. 26, no. 4, pp. 2811–2815, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Zhang, S. Wang, M. Xu et al., “Hierarchically porous ZnO architectures for gas sensor application,” Crystal Growth and Design, vol. 9, no. 8, pp. 3532–3537, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. X. J. Liu, X. Y. Zhu, C. Song, F. Zeng, and F. Pan, “Intrinsic and extrinsic origins of room temperature ferromagnetism in Ni-doped ZnO films,” Journal of Physics D: Applied Physics, vol. 42, no. 3, Article ID 035004, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. R. Neal, A. J. Behan, R. M. Ibrahim et al., “Room-temperature magneto-optics of ferromagnetic transition-metal-doped ZnO thin films,” Physical Review Letters, vol. 96, no. 19, Article ID 197208, pp. 1–4, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. X. H. Huang, G. H. Li, B. Q. Cao, M. Wang, and C. Hao, “Morphology evolution and CL property of Ni-doped zinc oxide nanostructures with room-temperature ferromagnetism,” Journal of Physical Chemistry C, vol. 113, no. 11, pp. 4381–4385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Progress in Materials Science, vol. 50, no. 3, pp. 293–340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. B. Djurišić, X. Chen, Y. H. Leung, and A. Man Ching Ng, “ZnO nanostructures: growth, properties and applications,” Journal of Materials Chemistry, vol. 22, no. 14, pp. 6526–6535, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Decremps, J. Pellicer-Porres, A. M. Saitta, J. Chervin, and A. Polian, “High-pressure Raman spectroscopy study of wurtzite ZnO,” Physical Review B: Condensed Matter and Materials Physics, vol. 65, no. 9, pp. 092101–092105, 2002. View at Google Scholar · View at Scopus
  12. A. Alsaad, “Structural, electronic and magnetic properties of Fe, Co, Mn-doped GaN and ZnO diluted magnetic semiconductors,” Physica B: Condensed Matter, vol. 440, pp. 1–9, 2014. View at Google Scholar
  13. C. Yilmaz and U. Unal, “Electrochemical deposition of Mn:ZnO films under hydrothermal conditions,” Journal of the Electrochemical Society, vol. 160, no. 4, pp. D163–D167, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. M. V. Limaye, S. B. Singh, R. Das, P. Poddar, and S. K. Kulkarni, “Room temperature ferromagnetism in undoped and Fe doped ZnO nanorods: microwave-assisted synthesis,” Journal of Solid State Chemistry, vol. 184, no. 2, pp. 391–400, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Lawes, A. S. Risbud, A. P. Ramirez, and R. Seshadri, “Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO,” Physical Review B: Condensed Matter and Materials Physics, vol. 71, no. 4, Article ID 045201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. T. Prabhu, V. Kumar, and K. V. Rao, “Effect of Fe doping on structural, optical and magnetic properties of ZnO nanoparticles derived by surfactant assisted combustion synthesis,” Advanced Science, Engineering and Medicine, vol. 5, no. 3, pp. 198–205, 2013. View at Google Scholar
  17. F. Ahmed, S. Kumar, N. Arshi, M. S. Anwar, and B. Heun Koo, “Morphological evolution between nanorods to nanosheets and room temperature ferromagnetism of Fe-doped ZnO nanostructures,” CrystEngComm, vol. 14, no. 11, pp. 4016–4026, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. V. K. Sharma and G. D. Varma, “Fe clusters as origin of ferromagnetism in hydrogenated Zn1-xFexO (x= 0.02 & 0.05) samples,” Advanced Materials Letters, vol. 3, no. 2, pp. 126–129, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. J. J. Beltrán, J. A. Osoriol, C. A. Barrero1, C. B. Hanna, and A. Punnoose, “Magnetic properties of Fe doped, Co doped, and Fe+Co co-doped ZnO,” Journal of Applied Physics, vol. 113, no. 17, Article ID 17C308, 2013. View at Publisher · View at Google Scholar
  20. A. Baranowska-Korczyc, A. Reszka, K. Sobczak et al., “Magnetic Fe doped ZnO nanofibers obtained by electrospinning,” Journal of Sol-Gel Science and Technology, vol. 61, no. 3, pp. 494–500, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. T. C. Damen, S. P. S. Porto, and B. Tell, “Raman effect in zinc oxide,” Physical Review, vol. 142, no. 2, pp. 570–574, 1966. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Singhal, S. N. Achary, J. Manjanna, S. Chatterjee, P. Ayyub, and A. K. Tyagi, “Chemical synthesis and structural and magnetic properties of dispersible cobalt- and nickel-doped ZnO nanocrystals,” The Journal of Physical Chemistry C, vol. 114, no. 8, pp. 3422–3430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. B. N. Mavrin, L. N. Demyanets, and R. M. Zakalukin, “Raman spectroscopy and Fermi resonance in Mn-doped ZnO bulk single crystal,” Physics Letters A: General, Atomic and Solid State Physics, vol. 374, no. 39, pp. 4054–4056, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Zhang, S. Zhou, H. Wang, and Z. Du, “Raman scattering and photoluminescence of Fe-doped ZnO nanocantilever arrays,” Chinese Science Bulletin, vol. 53, no. 11, pp. 1639–1643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Bundesmann, N. Ashkenov, M. Schubert et al., “Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li,” Applied Physics Letters, vol. 83, no. 10, pp. 1974–1976, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Shuang, X. X. Zhu, J. B. Wang, X. L. Zhong, G. J. Huang, and C. He, “The influence of Mn content on luminescence properties in Mn-doped ZnO films deposited by ultrasonic spray assisted chemical vapor deposition,” Applied Surface Science, vol. 257, no. 14, pp. 6085–6088, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” Journal of Applied Physics, vol. 79, no. 10, pp. 7983–7990, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Song, X. Fang, and H. Liang, “Effect of O2/Ar ratio on blue photoluminescence spectrum of nanocrystalline zno films,” Spectroscopy and Spectral Analysis, vol. 30, no. 3, pp. 591–594, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Chen, J. Ding, and S. Ma, “Violet and blue-green luminescence from Ti-doped ZnO films deposited by RF reactive magnetron sputtering,” Superlattices and Microstructures, vol. 49, no. 2, pp. 176–182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Wang and L. Gao, “Hydrothermal synthesis and photoluminescence properties of ZnO nanowires,” Solid State Communications, vol. 132, no. 3-4, pp. 269–271, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Elilarassi and G. Chandrasekaran, “Synthesis and characterization of ball milled Fe-doped ZnO diluted magnetic semiconductor,” Optoelectronics Letters, vol. 8, no. 2, pp. 109–112, 2012. View at Publisher · View at Google Scholar · View at Scopus