Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 835450, 5 pages
http://dx.doi.org/10.1155/2014/835450
Research Article

Influence of Sn Doping on Phase Transformation and Crystallite Growth of Nanocrystals

1State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China
3Amoy-BUCT Industrial of Biotechnovation Institute, Amoy 361026, China

Received 16 January 2014; Accepted 2 February 2014; Published 10 March 2014

Academic Editor: Shao-Wen Cao

Copyright © 2014 Guozhu Fu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. W. Cao, X. F. Liu, Y. P. Yuan et al., “Artificial photosynthetic hydrogen evolution over g-C3N4 nanosheets coupled with cobaloxime,” Physical Chemistry Chemical Physics, vol. 15, no. 42, pp. 18363–18366, 2013. View at Publisher · View at Google Scholar
  2. P. Hu, S. S. Pramana, S. W. Cao et al., “Ion-induced synthesis of uniform single-crystalline sulphide-based quaternary-alloy hexagonal nanorings for highly efficient photocatalytic Hydrogen evolution,” Advanced Materials, vol. 25, no. 18, pp. 2567–2572, 2013. View at Publisher · View at Google Scholar
  3. S. W. Cao, Y. P. Yuan, J. Fang et al., “In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation,” International Journal of Hydrogen Energy, vol. 38, pp. 1258–1266, 2013. View at Publisher · View at Google Scholar
  4. M. S. Yao, P. Hu, Y. B. Cao, W. C. Xiang, X. Zhang, and F. L. Yuan, “Morphology-controlled ZnO spherical nanobelt-flower arrays and their sensing properties,” Sensors and Actuators B: Chemical, vol. 177, pp. 562–569, 2013. View at Google Scholar
  5. S. W. Cao, J. Fang, M. M. Shahjamali et al., “In situ growth of Au nanoparticles on Fe2O3 nanocrystals for catalytic applications,” CrystEngComm, vol. 14, pp. 7229–7235, 2012. View at Publisher · View at Google Scholar
  6. A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 1, no. 1, pp. 1–21, 2000. View at Google Scholar · View at Scopus
  7. W. X. Dai, X. Chen, X. P. Zheng et al., “Photocatalytic oxidation of CO on TiO2: chemisorption of O2, CO, and H2,” ChemPhysChem, vol. 10, no. 2, pp. 411–419, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. S. Hassan, T. Amna, O. B. Yang, H. C. Kim, and M. S. Khil, “TiO2 nanofibers doped with rare earth elements and their photocatalytic activity,” Ceramics International, vol. 38, pp. 5925–5930, 2012. View at Publisher · View at Google Scholar
  9. Y. X. Li, S. Q. Peng, F. Y. Jiang, G. X. Lu, and S. B. Li, “Effect of doping TiO2 with alkaline-earth metal ions on its photocatalytic activity,” Journal of the Serbian Chemical Society, vol. 72, no. 4, pp. 393–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Z. Si, W. Jiang, H. X. Wang et al., “Large scale synthesis of nitrogen doped TiO2 nanoparticles by reactive plasma,” Materials Letters, vol. 68, pp. 161–163, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. G. S. Wu, J. L. Wen, J. P. Wang, D. F. Thomas, and A. C. Chen, “A facile approach to synthesize N and B co-doped TiO2 nanomaterials with superior visible-light response,” Materials Letters, vol. 64, pp. 1728–1731, 2010. View at Publisher · View at Google Scholar
  12. V. D. Binas, K. Sambani, T. Maggos, A. Katsanaki, and G. Kiriakidis, “Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light,” Applied Catalysis B: Environmental, vol. 113-114, pp. 79–86, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. H. J. Liu, G. G. Liu, and Q. X. Zhou, “Preparation and characterization of Zr doped TiO2 nanotube arrays on the titanium sheet and their enhanced photocatalytic activity,” Journal of Solid State Chemistry, vol. 182, no. 12, pp. 3238–3242, 2009. View at Google Scholar
  14. L. Sikong, B. Kongreong, D. Kantachote, and W. Sutthisripok, “Photocatalytic activity and antibacterial behavior of Fe3+-doped TiO2/SnO2 nanoparticles,” Energy Research Journal, vol. 1, no. 2, pp. 120–125, 2010. View at Publisher · View at Google Scholar
  15. J.-Y. Park, J.-J. Yun, C.-H. Hwang, and I.-H. Lee, “Influence of silver doping on the phase transformation and crystallite growth of electrospun TiO2 nanofibers,” Materials Letters, vol. 64, no. 24, pp. 2692–2695, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. P. Xu, Y. B. Lin, Z. H. Lu et al., “Enhanced ferromagnetism in Mn-doped TiO2 films during the structural phase transition,” Solid State Communications, vol. 140, no. 11-12, pp. 514–518, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. T. H. Jun and K. S. Lee, “Cr-doped TiO2 thin films deposited by RF-sputtering,” Materials Letters, vol. 64, no. 21, pp. 2287–2289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Y.-H. Zhang and A. Reller, “Phase transformation and grain growth of doped nanosized titania,” Materials Science and Engineering C, vol. 19, no. 1-2, pp. 323–326, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Q. Cao, T. He, L. S. Zhao, E. J. Wang, W. S. Yang, and Y. A. Cao, “Structure and phase transition behavior of Sn4+-doped TiO2 nanoparticles,” Journal of Physical Chemistry C, vol. 113, no. 42, pp. 18121–18124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Li and C. Z. Hua, “Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening,” Journal of the American Chemical Society, vol. 129, no. 51, pp. 15839–15847, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. Q. Zhang and L. Gao, “Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method: insights from rutile TiO2,” Langmuir, vol. 19, no. 3, pp. 967–971, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Arroyo, G. Córroyo, J. Padilla, and V. H. Lara, “Influence of manganese ions on the anatase–rutile phase transition of TiO2 prepared by the sol–gel process,” Materials Letters, vol. 54, pp. 397–402, 2002. View at Publisher · View at Google Scholar
  23. S. Vemury and S. E. Pratsinis, “Dopants in flame synthesis of titania,” Journal of the American Ceramic Society, vol. 78, no. 11, pp. 2984–2992, 1995. View at Google Scholar · View at Scopus
  24. J. G. Li, X. H. Wang, K. J. Watanabe, and T. M. Ishigaki, “Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists,” The Journal of Physical Chemistry B, vol. 110, no. 3, pp. 1121–1127, 2006. View at Publisher · View at Google Scholar
  25. C. Ribeiro, C. Vila, D. B. Stroppa et al., “Anisotropic growth of oxide nanocrystals: insights into the rutile TiO2 phase,” Journal of Physical Chemistry C, vol. 111, no. 16, pp. 5871–5875, 2007. View at Publisher · View at Google Scholar · View at Scopus