Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014 (2014), Article ID 853967, 8 pages
http://dx.doi.org/10.1155/2014/853967
Research Article

An Alcohol-Free SiO2 Sol-Gel Matrix Functionalized with Acetic Acid as Drug Reservoir for the Controlled Release of Pentoxifylline

1División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carr. Cunduacán-Jalpa de Méndez Km. 1, Colonia La Esmeralda, 86690 Cunduacán, TAB, Mexico
2Laboratorio de Microscopía Electrónica, Instituto Nacional de Rehabilitación, Calz. México-Xochimilco 289, Colonia Arenal de Guadalupe, 14389 Tlalpan, D.F., Mexico

Received 14 March 2014; Revised 22 May 2014; Accepted 22 May 2014; Published 6 July 2014

Academic Editor: Zhongkui Hong

Copyright © 2014 Mayra Angélica Alvarez Lemus et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. National Cancer Institute, “NCI Drug Dictionary,” 2012, http://www.cancer.gov/drugdictionary.
  2. J. de Haro, F. Acin, A. Florez, S. Bleda, and J. L. Fernandez, “A prospective randomized controlled study with intermittent mechanical compression of the calf in patients with claudication,” Journal of Vascular Surgery, vol. 51, no. 4, pp. 857–862, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. H.-L. Lin and C.-T. Yeh, “Alginate-crosslinked chitosan scaffolds as pentoxifylline delivery carriers,” Journal of Materials Science: Materials in Medicine, vol. 21, no. 5, pp. 1611–1620, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Bertocchi, P. Proserpio, M. G. Lampugnai, and E. Dejana, “The effect of pentoxifylline on polymorphonuclear cell adhesion to cultured endothelial cells,” in Pentoxifylline and Leukocyte Function, G. L. Mandell and W. J. Novick, Eds., Hoechst-Roussel Pharmaceuticals, Somerville, NJ, USA, 1988. View at Google Scholar
  5. P. E. M. Jarrett, M. Moreland, and N. L. Browse, “The effect of oxpentifylline (Trental') on fibrinolytic activity and plasma fibrinogen levels,” Current Medical Research and Opinion, vol. 4, no. 7, pp. 492–495, 1977. View at Publisher · View at Google Scholar · View at Scopus
  6. H.-P. Llöcking, A. Hoffmann, and F. Markwardt, “Release of plasminogen activator by pentoxifylline and its major metabolite,” Thrombosis Research, vol. 46, no. 5, pp. 747–750, 1987. View at Google Scholar · View at Scopus
  7. J. V. Mascarenhas, M. A. Albayati, C. P. Shearman, and E. B. Jude, “Peripheral arterial disease,” Endocrinology and Metabolism Clinics of North America, vol. 43, no. 1, pp. 149–166, 2014. View at Publisher · View at Google Scholar
  8. M. Albersen, T. M. Fandel, H. Zhang et al., “Pentoxifylline promotes recovery of erectile function in a rat model of postprostatectomy erectile dysfunction,” European Urology, vol. 59, no. 2, pp. 286–296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Goicoechea, S. G. de Vinuesa, B. Quiroga et al., “Effects of pentoxifylline on inflammatory parameters in chronic kidney disease patients: a randomized trial,” Journal of Nephrology, vol. 25, no. 6, pp. 969–975, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Chmielewska, L. Konieczna, A. Plenis, and H. Lamparczyk, “Quantitative determination of pentoxifylline in human plasma,” Acta Chromatographica, no. 16, pp. 70–79, 2006. View at Google Scholar · View at Scopus
  11. A. Ward and S. P. Clissold, “Pentoxifylline: a review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficacy,” Drugs, vol. 34, no. 1, pp. 50–97, 1987. View at Google Scholar · View at Scopus
  12. C. D. Pirvu, A. Ortan, M. Hirjau, R. Prisada, D. Lupuleasa, and A. Bogdan, “Studies concerning the optimization of the pentoxifylline encapsulation,” Romanian Biotechnological Letters, vol. 16, no. 1, pp. 66–73, 2011. View at Google Scholar · View at Scopus
  13. P. Matricardi, C. di Meo, T. Coviello, W. E. Hennink, and F. Alhaique, “Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering,” Advanced Drug Delivery Reviews, vol. 65, pp. 1172–1187, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Yang, Z. Quan, L. Lu, S. Huang, and J. Lin, “Luminescence functionalization of mesoporous silica with different morphologies and applications as drug delivery systems,” Biomaterials, vol. 29, no. 6, pp. 692–702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Carbone and R. Caminiti, “Fragmentation pathways of acetic acid upon adsorption on Si(1 0 0)2×1,” Surface Science, vol. 602, no. 4, pp. 852–858, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Duguet, M. Treguer-Delapierre, and M.-H. Delville, “Functionalisation of inorganic nanoparticles for biomedical applications,” in Nanosciences: Nanobiotechnology and Nanobiology, P. Boisseau, P. Houdy, and M. Lahmani, Eds., Springer, Berlin, Germany, 2009. View at Google Scholar
  17. H. Ryssel, O. Kloeters, G. Germann, T. Schäfer, G. Wiedemann, and M. Oehlbauer, “The antimicrobial effect of acetic acid—an alternative to common local antiseptics?” Burns, vol. 35, no. 5, pp. 695–700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, chapter 2, Academic Press, New York, NY, USA, 1990.
  19. D. P. Zarubin, “The two-component bands at about 4500 and 800 cm−1 in infrared spectra of hydroxyl-containing silicas. Interpretation in terms of Fermi resonance,” Journal of Non-Crystalline Solids, vol. 286, no. 1-2, pp. 80–88, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. B. M. Rahman, M. A. Islam, M. I. I. Wahed et al., “In-vitro studies of pentoxifylline controlled-release from hydrophilic matrices,” Journal of Scientific Research, vol. 1, no. 2, pp. 353–362, 2009. View at Publisher · View at Google Scholar
  21. S. Tamizharasi, J. C. Rathi, and V. Rathi, “Formulation, and evaluation of pentoxifylline-loaded poly(ε-caprolactone) microspheres,” Indian Journal of Pharmaceutical Sciences, vol. 70, no. 3, pp. 333–337, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. H. de Oliveira, E. A. de Moura, M. F. Pinto et al., “Thermal characterization of raw material pentoxifylline using thermoanalytical techniques and Pyr-GC/MS,” Journal of Thermal Analysis and Calorimetry, vol. 106, no. 3, pp. 763–766, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Sun, Y. Li, L. Li et al., “Functionalization and bioactivity in vitro of mesoporous bioactive glasses,” Journal of Non-Crystalline Solids, vol. 354, no. 32, pp. 3799–3805, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Fleisher, V. Stonkus, I. Liepina et al., “Theoretical study of ketonization reaction mechanism of acetic acid over SiO2,” in Proceedings of the 13th International Electronic Conference on Synthetic Organic Chemistry (ECSOC '09), Riga, Latvia, November 2009.
  25. J. Zhang, Z. Guo, X. Zhi, and H. Tang, “Surface modification of ultrafine precipitated silica with 3-methacryloxypropyltrimethoxysilane in carbonization process,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 418, no. 5, pp. 174–179, 2013. View at Publisher · View at Google Scholar · View at Scopus