Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2014, Article ID 951360, 9 pages
http://dx.doi.org/10.1155/2014/951360
Research Article

Horizontal Assembly of Single Nanowire Diode Fabricated by p-n Junction GaN NW Grown by MOCVD

1Semiconductor Materials and Process Laboratory, School of Advanced Materials Engineering, Research Center for Advanced Materials Development (RCAMD), Chonbuk National University, Jeonju 561-756, Republic of Korea
2Department of General Studies, Physics Group, Jubail University College, Royal Commission for Jubail, Jubail 10074, Saudi Arabia
3Department of Physics, Yonsei University, Seoul 120-749, Republic of Korea

Received 24 January 2014; Accepted 16 June 2014; Published 10 July 2014

Academic Editor: Alireza Talebitaher

Copyright © 2014 Ji-Hyeon Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature, vol. 386, no. 6623, pp. 351–359, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature, vol. 441, no. 7092, pp. 489–493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: processing, defects, and devices,” Journal of Applied Physics, vol. 86, no. 1, pp. 1–15, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Wang, B. A. Sheriff, and J. R. Heath, “Complementary symmetry silicon nanowire logic: power-efficient inverters with gain,” Small, vol. 2, no. 10, pp. 1153–1158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Waltereit, O. Brandt, A. Trampert et al., “Nirtride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature, vol. 406, no. 6798, pp. 865–868, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Polenta, M. Rossi, A. Cavallini et al., “Investigation on localized states in GaN nanowires,” ACS Nano, vol. 2, no. 2, pp. 287–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Lai, W. Kim, and P. Yang, “Vertical nanowire array-based light emitting diodes,” Nano Research, vol. 1, no. 2, pp. 123–128, 2008. View at Publisher · View at Google Scholar
  8. J. Miao, W. Guo, N. Lu et al., “Single InAs nanowire room-temperature near-infrared photodetectors,” ACS Nano, vol. 8, no. 4, pp. 3628–3635, 2014. View at Google Scholar
  9. A. Afal, S. Coskun, and H. E. Unalan, “All solution processed, nanowire enhanced ultraviolet photodetectors,” Applied Physics Letters, vol. 102, no. 4, Article ID 043503, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, “Complete composition tunability of InGaN nanowires using a combinatorial approach,” Nature Materials, vol. 6, no. 12, pp. 951–956, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Armitage and K. Tsubaki, “Multicolour luminescence from InGaN quantum wells grown over GaN nanowire arrays by molecular-beam epitaxy,” Nanotechnology, vol. 21, no. 19, Article ID 195202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Letters, vol. 10, no. 3, pp. 1082–1087, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. L. Diedenhofen, G. Vecchi, R. E. Algra et al., “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Advanced Materials, vol. 21, no. 9, pp. 973–978, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Kupec, R. L. Stoop, and B. Witzigmann, “Light absorption and emission in nanowire array solar cells,” Optics Express, vol. 18, no. 26, pp. 27589–27605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Ghosh and D. Basak, “Quantum confinement of excitons in dendrite-like GaN nanowires,” Journal of Applied Physics, vol. 98, no. 8, Article ID 086104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Ristić, C. Rivera, E. Calleja, S. Fernández-Garrido, M. Povoloskyi, and A. Di Carlo, “Carrier-confinement effects in nanocolumnar GaN AlxGa1-xN quantum disks grown by molecular-beam epitaxy,” Physical Review B—Condensed Matter and Materials Physics, vol. 72, no. 8, Article ID 085330, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. S. Chen, D. Yeh, Y. Lu et al., “Strain relaxation and quantum confinement in InGaN/GaN nanoposts,” Nanotechnology, vol. 17, no. 5, pp. 1454–1457, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Im, Y. S. Park, S.-K. Lee, Y.-H. Cho, and R. A. Taylor, “Micro- and time-resolved photoluminescence in GaN nanorods with different diameters,” Journal of the Korean Physical Society, vol. 57, no. 4, pp. 756–759, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. J. An, J. H. Chae, G. Yi, and G. H. Park, “Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays,” Applied Physics Letters, vol. 92, no. 12, Article ID 121108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Wang, L. Chen, G. Chen et al., “GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength,” Optics Express, vol. 16, no. 14, pp. 10549–10556, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science, vol. 294, no. 5545, pp. 1313–1317, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Letters, vol. 3, no. 2, pp. 149–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. A. L. Vallett, S. Minassian, P. Kaszuba, S. Datta, J. M. Redwing, and T. S. Mayer, “Fabrication and characterization of axially doped silicon nanowire tunnel field-effect transistors,” Nano Letters, vol. 10, no. 12, pp. 4813–4818, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Hagfeld and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems,” Chemical Reviews, vol. 95, no. 1, pp. 49–68, 1995. View at Google Scholar · View at Scopus
  25. B. Tian, X. Zheng, T. J. Kempa et al., “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature, vol. 449, no. 7164, pp. 885–889, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science, vol. 324, no. 5924, pp. 232–235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Zhang, Y. Li, Q. Tang, L. Liu, and Z. Zhou, “First-principles studies on structural and electronic properties of GaN-AlN heterostructure nanowires,” Nanoscale, vol. 4, no. 4, pp. 1078–1084, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Xia, P. Yang, Y. Sun et al., “One-dimensional nanostructures: synthesis, characterization, and applications,” Advanced Materials, vol. 15, no. 5, pp. 353–389, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, and P. Yang, “Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections,” Nano Letters, vol. 3, no. 8, pp. 1063–1066, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. S.-K. Lee, T.-H. Kim, K.-C. Choi, and P. Yang, “High-brightness gallium nitride nanowire UV-blue light emitting diodes,” Philosophical Magazine, vol. 87, no. 14-15, pp. 2105–2115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Deb, H. Kim, Y. Qin et al., “GaN nanorod schottky and p-n junction diodes,” Nano Letters, vol. 6, no. 12, pp. 2893–2898, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoical, E. Sutter, and H. Lüth, “Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy,” Nano Letters, vol. 7, no. 8, pp. 2248–2251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. S. Park, C. M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, “Photoluminescence studies of GaN nanorods on Si (111) substrates grown by molecular-beam epitaxy,” Applied Physics Letters, vol. 85, no. 23, pp. 5718–5720, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Goldberger, R. He, Y. Zhang et al., “Single-crystal gallium nitride nanotubes,” Nature, vol. 422, no. 6932, pp. 599–602, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Wang, K. Zang, S. Chua, M. S. Sander, S. Tripathy, and C. G. Fonstad, “High-density arrays of InGaN nanorings, nanodots, and nanoarrows fabricated by a template-assisted approach,” Journal of Physical Chemistry B, vol. 110, no. 23, pp. 11081–11087, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. M. Lee, R. Navamathavan, K. Song et al., “Bicrystalline GaN nanowires grown by the formation of PtGa solid solution nano-droplets on Si(111) using MOCVD,” Journal of Crystal Growth, vol. 312, no. 16-17, pp. 2339–2344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Deb, H. Kim, V. Rawat et al., “Faceted and vertically aligned GaN nanorod arrays fabricated without catalysts or lithography,” Nano Letters, vol. 5, no. 9, pp. 1847–1851, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. H.-M. Kim, D. S. Kim, Y. S. Park, D. Y. Kim, T. W. Kang, and K. S. Chung, “Growth of GaN nanorods by a hybrid vapour phase epitaxy method,” Advanced Materials, vol. 14, no. 13-14, pp. 991–993, 2002. View at Publisher · View at Google Scholar
  39. H.-M. Kim, T. W. Kang, and K. S. Chung, “Growth of GaN nanorods by a hydride vapor phase epitaxy method,” Advanced Materials, vol. 15, pp. 567–569, 2003. View at Google Scholar
  40. Y. B. Tang, Z. H. Chen, H. S. Song et al., “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Letters, vol. 8, no. 12, pp. 4191–4195, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Japanese Journal of Applied Physics, vol. 28, pp. L2112–L2114, 1989. View at Google Scholar
  42. M. E. Lin, B. N. Sverdlov, and H. Morkoç, “Thermal stability of GaN investigated by low-temperature photoluminescence spectroscopy,” Applied Physics Letters, vol. 63, no. 26, pp. 3625–3627, 1993. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Stoica, E. Sutter, R. J. Meijers et al., “Interface and wetting layer effect on the catalyst-free nucleation and growth of GaN nanowires,” Small, vol. 4, no. 6, pp. 751–754, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Qin, C. Xue, Y. Duan, and L. Shi, “Synthesis and characterization of glomerate GaN nanowires,” Nanoscale Research Letters, vol. 4, no. 6, pp. 584–587, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Chen, J. Li, Y. Cao et al., “Straight and smooth GaN nanowires,” Advanced Materials, vol. 12, no. 19, pp. 1432–1434, 2000. View at Publisher · View at Google Scholar
  46. J. M. van Hove, R. Hickman, J. J. Klaassen, P. P. Chow, and P. P. Ruden, “Ultraviolet-sensitive, visible-blind GaN photodiodes fabricated by molecular beam epitaxy,” Applied Physics Letters, vol. 70, no. 17, pp. 2282–2284, 1997. View at Publisher · View at Google Scholar · View at Scopus