Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2015 (2015), Article ID 139382, 6 pages
http://dx.doi.org/10.1155/2015/139382
Research Article

Photoactive Layer of DSSCS Based on Natural Dyes: A Study of Experiment and Theory

1College of Science, Northeast Forestry University, Harbin, Heilongjiang 150040, China
2School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
3Department of Physics, Liaoning University, Shenyang, Liaoning 110036, China

Received 10 August 2015; Accepted 12 October 2015

Academic Editor: Tran V. Cuong

Copyright © 2015 Yuanzuo Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Hagfeldt and M. Graetzel, “Light-induced redox reactions in nanocrystalline systems,” Chemical Reviews, vol. 95, no. 1, pp. 49–68, 1995. View at Publisher · View at Google Scholar
  2. S. Ito, S. M. Zakeeruddin, R. Humphry-Baker et al., “High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness,” Advanced Materials, vol. 18, no. 9, pp. 1202–1205, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Koumura, Z. S. Wang, S. Mori, M. Miyashita, E. Suzuki, and K. Hara, “Alkyl-functionalized organic dyes for efficient molecular photovoltaics,” Journal of the American Chemical Society, vol. 128, no. 44, pp. 14256–14257, 2006. View at Google Scholar
  4. H. N. Tian, X. C. Yang, R. K. Chen et al., “Phenothiazine derivatives for efficient organic dye-sensitized solar cells,” Chemical Communications, no. 36, pp. 3741–3743, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Hara, M. Kurashige, Y. Dan-Oh et al., “Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells,” New Journal of Chemistry, vol. 27, no. 5, pp. 783–785, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Bessho, E. Yoneda, J.-H. Yum et al., “New paradigm in molecular engineering of sensitizers for solar cell applications,” Journal of the American Chemical Society, vol. 131, no. 16, pp. 5930–5934, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Funaki, H. Funakoshi, O. Kitao et al., “Cyclometalated ruthenium(II) complexes as near-IR sensitizers for high efficiency dye-sensitized solar cells,” Angewandte Chemie, vol. 51, no. 30, pp. 7528–7531, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Calogero, A. Bartolotta, G. Di Marco, A. Di Carlo, and F. Bonaccorso, “Vegetable-based dye-sensitized solar cells,” Chemical Society Reviews, vol. 44, no. 10, pp. 3244–3294, 2015. View at Publisher · View at Google Scholar
  9. N. A. Ludin, A. M. A.-A. Mahmoud, A. B. Mohamad, A. A. H. Kadhum, K. Sopiana, and N. S. A. Karima, “Review on the development of natural dye photosensitizer for dye-sensitized solar cells,” Renewable and Sustainable Energy Reviews, vol. 31, pp. 386–396, 2014. View at Publisher · View at Google Scholar
  10. M. Shahid, S. Ul-Islam, and F. Mohammad, “Recent advancements in natural dye applications: a review,” Journal of Cleaner Production, vol. 53, pp. 310–331, 2013. View at Publisher · View at Google Scholar
  11. M. R. Narayan, “Review: dye sensitized solar cells based on natural photosensitizers,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 208–215, 2012. View at Publisher · View at Google Scholar
  12. R. Hemmatzadeh and A. Jamali, “Enhancing the optical absorption of anthocyanins for dye-sensitized solar cells,” Journal of Renewable and Sustainable Energy, vol. 7, no. 1, Article ID 013120, 2015. View at Publisher · View at Google Scholar
  13. G. R. A. Kumara, S. Kaneko, M. Okuya, B. Onwona-Agyeman, A. Konno, and K. Tennakone, “Shiso leaf pigments for dye-sensitized solid-state solar cell,” Solar Energy Materials and Solar Cells, vol. 90, no. 9, pp. 1220–1226, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Espinosa, I. Zumeta, J. L. Santana et al., “Nanocrystalline TiO2 photosensitized with natural polymers with enhanced efficiency from 400 to 600 nm,” Solar Energy Materials and Solar Cells, vol. 85, no. 3, pp. 359–369, 2005. View at Publisher · View at Google Scholar
  15. E. Yamazaki, M. Murayama, N. Nishikawa, N. Hashimoto, M. Shoyama, and O. Kurita, “Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells,” Solar Energy, vol. 81, no. 4, pp. 512–516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. R. Dreizler and E. K. U. Gross, Density Functional Theory, Springer, Heidelberg, Germany, 1990.
  17. A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Physical Review A, vol. 38, no. 6, pp. 3098–3100, 1988. View at Publisher · View at Google Scholar
  18. A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” The Journal of Chemical Physics, vol. 98, no. 7, p. 5648, 1993. View at Publisher · View at Google Scholar
  19. C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B, vol. 37, no. 2, pp. 785–789, 1988. View at Publisher · View at Google Scholar
  20. R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, “An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules,” The Journal of Chemical Physics, vol. 109, no. 19, pp. 8218–8224, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Yanai, D. P. Tew, and N. C. Handy, “A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP),” Chemical Physics Letters, vol. 393, no. 1–3, pp. 51–57, 2004. View at Publisher · View at Google Scholar
  22. M. J. Frinch, G. W. Trucks, H. B. Schlegel et al., Gaussian 09 (Revision A.1), Gaussian, Wallingford, Conn, USA, 2009.
  23. J. A. Talla, S. A. Salman, H. Sabbah, E. Yasin, and A. A. Zir, “Modeling single-walled boron nitride nanotube pressure sensor: density functional study,” Nanoscience and Nanotechnology Letters, vol. 7, no. 6, pp. 500–506, 2015. View at Publisher · View at Google Scholar
  24. G. J. Zhao and K. L. Han, “Hydrogen bonding in the electronic excited state,” Accounts of Chemical Research, vol. 45, no. 3, pp. 404–413, 2012. View at Publisher · View at Google Scholar
  25. Y. Z. Li, T. Pullerits, M. Y. Zhao, and M. T. Sun, “Theoretical characterization of the PC60BM:PDDTT model for an organic solar cell,” Journal of Physical Chemistry C, vol. 115, no. 44, pp. 21865–21873, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Song, Y. Z. Li, F. C. Ma, and M. T. Sun, “Insight into external electric field dependent photoinduced intermolecular charge transport in BHJ solar cell materials,” Journal of Materials Chemistry C, vol. 3, no. 18, pp. 4810–4819, 2015. View at Publisher · View at Google Scholar
  27. X. M. Zhao and M. D. Chen, “DFT study on the influence of electric field on surface-enhanced Raman scattering from pyridine-metal complex,” Journal of Raman Spectroscopy, vol. 45, no. 1, pp. 62–67, 2014. View at Publisher · View at Google Scholar
  28. S. M. Milenković, J. B. Zvezdanović, T. D. Andjelković, and D. Z. Marković, “The identification of chlorophyll and its derivatives in the pigment mixtures: HPLC-chromatography, visible and mass spectroscopy studies,” Advanced Technologies, vol. 1, no. 1, pp. 16–24, 2012. View at Google Scholar
  29. V. Shanmugam, S. Manoharan, A. Sharafali, S. Anandan, and R. Murugan, “Green grasses as light harvesters in dye sensitized solar cells,” Spectrochimica Acta—Part A: Molecular and Biomolecular Spectroscopy, vol. 135, pp. 947–952, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chemical Reviews, vol. 110, no. 11, pp. 6595–6663, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Rehm and A. Weller, “Kinetics of fluorescence quenching by electron and H-atom transfer,” Israel Journal of Chemistry, vol. 8, no. 2, pp. 259–271, 1970. View at Publisher · View at Google Scholar
  32. C. Y. Qin and A. E. Clark, “DFT characterization of the optical and redox properties of natural pigments relevant to dye-sensitized solar cells,” Chemical Physics Letters, vol. 438, no. 1–3, pp. 26–30, 2007. View at Publisher · View at Google Scholar
  33. K. Kalyanasundaram and M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices,” Coordination Chemistry Reviews, vol. 177, no. 1, pp. 347–414, 1998. View at Publisher · View at Google Scholar