Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2015, Article ID 395014, 7 pages
http://dx.doi.org/10.1155/2015/395014
Research Article

Functionalization of Carbon Nanofibres Obtained by Floating Catalyst Method

1Centro de Investigación en Nanomateriales y Nanotecnología (CINN) (CSIC, Universidad de Oviedo, Principado de Asturias), Avenida de la Vega 4-6, 33940 El Entrego, Spain
2Moscow State University of Technology (STANKIN), Vadkovskij per. 1, Moscow, Moscow Oblast, Russia
3Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain

Received 27 January 2015; Accepted 13 March 2015

Academic Editor: Nay Ming Huang

Copyright © 2015 Adolfo Fernández et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Springer, Berlin, Germany, 2001.
  2. E. V. Basiuk and V. A. Basiuk, “Green chemistry of carbon nanomaterials,” Journal of Nanoscience and Nanotechnology, vol. 14, no. 1, pp. 644–672, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Scida, P. W. Stege, G. Haby, G. A. Messina, and C. D. García, “Recent applications of carbon-based nanomaterials in analytical chemistry: critical review,” Analytica Chimica Acta, vol. 691, no. 1-2, pp. 6–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Dai, D. W. Chang, J.-B. Baek, and W. Lu, “Carbon nanomaterials for advanced energy conversion and storage,” Small, vol. 8, no. 8, pp. 1130–1166, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, L. Spain, and H. A. Goldberg, Graphite Fibres and Filaments, Springer, Berlin, Germany, 1988.
  6. J. L. Figueiredo, C. A. Bernardo, R. T. K. Baker, and K. J. Hüttinger, Carbon Fibers Filaments and Composites, Kluwer Academic, Dordrecht, Netherlands, 1990.
  7. N. Latorre, T. Ubieto, C. Royo et al., “Materiales nanocarbonosos: nanotubos y nanofibras de carbono: aspectos básicos y métodos de producción,” Ingeniería Química, vol. 36, no. 417, pp. 200–208, 2004. View at Google Scholar · View at Scopus
  8. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, no. 6430, pp. 603–605, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. D. S. Bethune, C. H. Kiang, M. S. De Vries et al., “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, vol. 363, no. 6430, pp. 605–607, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature, vol. 6, no. 3, pp. 183–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Martin-Gullon, J. Vera, J. A. Conesa, J. L. González, and C. Merino, “Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor,” Carbon, vol. 44, no. 8, pp. 1572–1580, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Merino and P. Soto, “Furnace for the manufacture of carbon fibres, procedure for obtaining using said furnace and the fibre thus obtained,” European Patent Application 04381014, 2004.
  14. G. G. Tibbetts, C. A. Bernardo, D. W. Gorkiewicz, and R. L. Alig, “Role of sulfur in the production of carbon fibers in the vapor phase,” Carbon, vol. 32, pp. 569–576, 1994. View at Google Scholar
  15. S. Collins, R. Brydson, and B. Rand, “Structural analysis of carbon nanofibres grown by the floating catalyst method,” Carbon, vol. 40, no. 7, pp. 1089–1100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Ci, Y. Li, B. Wei, J. Liang, C. Xu, and D. Wu, “Preparation of carbon nanofibers by the floating catalyst method,” Carbon, vol. 38, no. 14, pp. 1933–1937, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Ci, H. Zhu, B. Wei, J. Liang, C. Xu, and D. Wu, “Phosphorus—a new element for promoting growth of carbon filaments by the floating catalyst method,” Carbon, vol. 37, no. 10, pp. 1652–1654, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Singh, T. Quested, C. B. Boothroyd et al., “Synthesis and characterization of carbon nanofibers produced by the floating catalyst method,” The Journal of Physical Chemistry B, vol. 106, no. 42, pp. 10915–10922, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. J. V. Agulló, Nanofilamentos de carbono, sus tratamientos superficiales y su aplicación en materiales compuestos de matriz polimérica [Doctoral thesis], University of Alicante, Alicante, Spain, 2008.
  20. Y. A. Kim, T. Matusita, T. Hayashi, M. Endo, and M. S. Dresselhaus, “Topological changes of vapor grown carbon fibers during heat treatment,” Carbon, vol. 39, no. 11, pp. 1747–1752, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Lim, S. H. Yoon, I. Mochida, and J. H. Chi, “Surface modification of carbon nanofiber with high degree of graphitization,” Journal of Physical Chemistry B, vol. 108, no. 5, pp. 1533–1536, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. G. G. Tibbetts, D. G. Glasgow, C. Kwag, J. Y. Howe, and M. L. Lake, How Structural Changes Induced by Heat-Treatment of Carbon Nanofibers Can Lead to Improved Composite Properties, Carbon, Providence, RI, USA, 2004.
  23. J. Chen, J. Y. Shan, T. Tsukada et al., “The structural evolution of thin multi-walled carbon nanotubes during isothermal annealing,” Carbon, vol. 45, no. 2, pp. 274–280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Endo, Y. A. Kim, T. Hayashi et al., “Microstructural changes induced in ‘stacked cup’ carbon nanofibers by heat treatment,” Carbon, vol. 41, no. 10, pp. 1941–1947, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Andrews, D. Jacques, D. Qian, and E. C. Dickey, “Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures,” Carbon, vol. 39, no. 11, pp. 1681–1687, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martínez-Alonso, and J. M. D. Tascón, “Raman microprobe studies on carbon materials,” Carbon, vol. 32, no. 8, pp. 1523–1532, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Seuk Youn, H. Ryu, T.-H. Cho, and W.-K. Choi, “Purity enhancement and electrochemical hydrogen storage property of carbon nanofibers grown at low temperature,” International Journal of Hydrogen Energy, vol. 27, no. 9, pp. 937–940, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Guzmán, Optimización de propiedades mecánicas y eléctricas de nanofibras de carbono/epoxi [Ph.D. thesis], University of Zaragoza, Zaragoza, Spain, 2007.
  29. P. V. Lakshminarayanan, H. Toghiani, and C. U. Pittman Jr., “Nitric acid oxidation of vapor grown carbon nanofibers,” Carbon, vol. 42, no. 12-13, pp. 2433–2442, 2004. View at Publisher · View at Google Scholar · View at Scopus