Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2015, Article ID 450183, 10 pages
http://dx.doi.org/10.1155/2015/450183
Research Article

Synthesis of Carbon Encapsulated Mono- and Multi-Iron Nanoparticles

FEMAN Grupo, Instituto de Nanociencia y Nanotecnología (IN2UB), Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain

Received 16 December 2014; Revised 8 February 2015; Accepted 19 February 2015

Academic Editor: Dan Xia

Copyright © 2015 M. Reza Sanaee and Enric Bertran. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Reiss and A. Hütten, “Magnetic nanoparticles: applications beyond data storage,” Nature Materials, vol. 4, no. 10, pp. 725–726, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Yang and S. Wang, “High cycling performance cathode material: interconnected LiFePO4/carbon nanoparticles fabricated by sol-gel method,” Journal of Nanomaterials, vol. 2014, Article ID 801562, 7 pages, 2014. View at Publisher · View at Google Scholar
  3. L.-G. Zamfir, I. Geana, S. Bourigua et al., “Highly sensitive label-free immunosensor for ochratoxin A based on functionalized magnetic nanoparticles and EIS/SPR detection,” Sensors and Actuators B: Chemical, vol. 159, no. 1, pp. 178–184, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Singamaneni, V. N. Bliznyuk, C. Binek, and E. Y. Tsymbal, “Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications,” Journal of Materials Chemistry, vol. 21, no. 42, pp. 16819–16845, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Colombo, S. Carregal-Romero, M. F. Casula et al., “Biological applications of magnetic nanoparticles,” Chemical Society Reviews, vol. 41, no. 11, pp. 4306–4334, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Ishii, R. Shibata, Y. Numaguchi et al., “Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 10, pp. 2210–2215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Cao, Z. Li, J. Wang et al., “Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis,” Trends in Food Science & Technology, vol. 27, no. 1, pp. 47–56, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. O. Veiseh, J. W. Gunn, and M. Zhang, “Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging,” Advanced Drug Delivery Reviews, vol. 62, no. 3, pp. 284–304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Yanase, J. Nomura, Y. Matsumura, H. Kato, and T. Tagawa, “Hyperthermia enhances the antitumor effect of photodynamic therapy with ALA hexyl ester in a squamous cell carcinoma tumor model,” Photodiagnosis and Photodynamic Therapy, vol. 9, no. 4, pp. 369–375, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. H. B. Na, I. C. Song, and T. Hyeon, “Inorganic nanoparticles for MRI contrast agents,” Advanced Materials, vol. 21, no. 21, pp. 2133–2148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Ruiz, G. Salas, M. Calero et al., “Short-chain PEG molecules strongly bound to magnetic nanoparticle for MRI long circulating agents,” Acta Biomaterialia, vol. 9, no. 5, pp. 6421–6430, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. R. D. Ambashta and M. Sillanpää, “Water purification using magnetic assistance: a review,” Journal of Hazardous Materials, vol. 180, no. 1–3, pp. 38–49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Zuo, C. Peng, Q. Huang et al., “Design of a carbon nanotube/magnetic nanoparticle-based peroxidase-like nanocomplex and its application for highly efficient catalytic oxidation of phenols,” Nano Research, vol. 2, no. 8, pp. 617–623, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, and D. Thompsett, “Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine chemicals,” Angewandte Chemie, vol. 43, no. 42, pp. 5645–5649, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Bystrzejewski, R. Klingeler, T. Gemming, B. Büchner, and M. H. Rümmeli, “Synthesis of carbon-encapsulated iron nanoparticles by pyrolysis of iron citrate and poly(vinyl alcohol): a critical evaluation of yield and selectivity,” Nanotechnology, vol. 22, no. 31, Article ID 315606, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. G. Roca, D. Carmona, N. Miguel-Sancho et al., “Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures,” Nanotechnology, vol. 23, no. 15, Article ID 155603, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. A. M. Nowicka, A. Kowalczyk, M. Bystrzejewski, M. Donten, and Z. Stojek, “Carbon-encapsulated iron nanoparticles used to generate magnetic field and to enhance substrate transport at electrode surface,” Electrochemistry Communications, vol. 20, no. 1, pp. 4–6, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Reza Sanaee and E. Bertran, “Synthesis of carbon encapsulated iron nanoparticles for applications in biomedicine,” Journal of Nanomedicine and Nanotechnology, vol. 4, no. 6, p. 219, 2013. View at Google Scholar
  19. M. Reza Sanaee, V. M. Freire, N. Aguil, E. Bertran, and N. Aguiló-Aguayo, “Design and synthesis of carbon encapsulated iron nanoparticle for drug delivery,” in Proceedings of the 10th International Conference on Nano Bio and Med, pp. 212–213, Phantoms Foundation, Bilbao, Spain, 2013.
  20. K. Wang, Y. Huang, T. Han, Y. Zhao, H. Huang, and L. Xue, “Facile synthesis and performance of polypyrrole-coated hollow Zn2SnO4 boxes as anode materials for lithium-ion batteries,” Ceramics International, vol. 40, no. 1, pp. 2359–2364, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Schärtl, “Current directions in core–shell nanoparticle design,” Nanoscale, vol. 2, no. 6, pp. 829–843, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Wu, N. Du, H. Zhang, J. Yu, and D. Yang, “Carbon nanocapsules as nanoreactors for controllable synthesis of encapsulated iron and iron oxides: magnetic properties and reversible lithium storage,” The Journal of Physical Chemistry C, vol. 115, no. 9, pp. 3612–3620, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Avalos-Belmontes, L. F. Ramos-Devalle, E. Ramírez-Vargas, S. Sánchez-Valdes, J. Méndez-Nonel, and R. Zitzumbo-Guzmán, “Nucleating effect of carbon nanoparticles and their influence on the thermal and chemical stability of polypropylene,” Journal of Nanomaterials, vol. 2012, Article ID 406214, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. R. Uhm and C. K. Rhee, “Synthesis and magnetic properties of Ni and carbon coated Ni by levitational gas condensation (LGC),” Journal of Nanomaterials, vol. 2013, Article ID 427489, 6 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Chen, G. Hong, H. Wang et al., “Graphite-coated magnetic nanoparticle microarray for few-cells enrichment and detection,” ACS Nano, vol. 6, no. 2, pp. 1094–1101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Luo, K. Liu, Z. Liu et al., “Controllable synthesis of carbon coated iron-based composite nanoparticles,” Nanotechnology, vol. 23, no. 47, Article ID 475603, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. “Study of carbon encapsulated iron nanoparticles produced by a modified arc discharge by applying nitrogen, argon and helium,” in Proceedings of the International Conference on Nanoscience and Nanotechnology, pp. 160–161, Phantoms Foundation, Bilbao, Spain, 2013.
  28. M. R. Sanaee, N. Aguiló-Aguayo, and E. Bertran, “Influences of argon-helium mixtures on the carbon-coated iron nanoparticles produced by a modified arc discharge,” in Proceedings of the 9th International Conference on Nanoscience and Nanotechnologies, p. 12, Artion, Thessaloniki, Greece, 2012.
  29. L. Shen and N. Wang, “Effect of nitrogen pressure on the structure of Cr-N, Ta-N, Mo-N, and W-N nanocrystals synthesized by arc discharge,” Journal of Nanomaterials, vol. 2011, Article ID 781935, 5 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Zhang, H. Niu, Z. Hu, Y. Cai, and Y. Shi, “Preparation of carbon coated Fe3O4 nanoparticles and their application for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples,” Journal of Chromatography A, vol. 1217, no. 29, pp. 4757–4764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Cao, G. Huang, S. Xuan, Q. Wu, F. Gu, and C. Li, “Synthesis and characterization of carbon-coated iron core/shell nanostructures,” Journal of Alloys and Compounds, vol. 448, no. 1-2, pp. 272–276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Lu, Z. Zhu, and Z. Liu, “Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene,” Carbon, vol. 43, no. 2, pp. 369–374, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. H. Wang, Z. D. Zhang, C. J. Choi, and B. K. Kim, “Structure and magnetic properties of Fe(C) and Co(C) nanocapsules prepared by chemical vapor condensation,” Journal of Alloys and Compounds, vol. 361, no. 1-2, pp. 289–293, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Nishijo, C. Okabe, J. Bushiri, K. Kosugi, N. Nishi, and H. Sawa, “Formation of carbon-encapsulated metallic nano-particles from metal acetylides by electron beam irradiation,” The European Physical Journal D—Atomic, Molecular, Optical and Plasma Physics, vol. 34, no. 1–3, pp. 219–222, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. J. B. Park, S. H. Jeong, M. S. Jeong, J. Y. Kim, and B. K. Cho, “Synthesis of carbon-encapsulated magnetic nanoparticles by pulsed laser irradiation of solution,” Carbon, vol. 46, no. 11, pp. 1369–1377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Huo, H. Song, and X. Chen, “Preparation of carbon-encapsulated iron nanoparticles by co-carbonization of aromatic heavy oil and ferrocene,” Carbon, vol. 42, no. 15, pp. 3177–3182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. R. P. Chaudhary, S. K. Mohanty, and A. R. Koymen, “Novel method for synthesis of Fe core and C shell magnetic nanoparticles,” Carbon, vol. 79, pp. 67–73, 2014. View at Publisher · View at Google Scholar
  38. M. Zhao, H. Song, X. Chen, and W. Lian, “Large-scale synthesis of onion-like carbon nanoparticles by carbonization of phenolic resin,” Acta Materialia, vol. 55, no. 18, pp. 6144–6150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Luo, X. Li, X. Wang, H. Yan, C. Zhang, and H. Wang, “Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method,” Carbon, vol. 48, no. 13, pp. 3858–3863, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Bystrzejewski, “Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles,” Journal of Solid State Chemistry, vol. 184, no. 6, pp. 1492–1498, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. V. Fedoseeva, L. G. Bulusheva, A. V. Okotrub et al., “Effect of oxidation and heat treatment on the morphology and electronic structure of carbon-encapsulated iron carbide nanoparticles,” Materials Chemistry and Physics, vol. 135, no. 1, pp. 235–240, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. Abdullaeva, E. Omurzak, C. Iwamoto et al., “Onion-like carbon-encapsulated Co, Ni, and Fe magnetic nanoparticles with low cytotoxicity synthesized by a pulsed plasma in a liquid,” Carbon, vol. 50, no. 5, pp. 1776–1785, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. V. Gupta, M. K. Patra, A. Shukla et al., “Synthesis of core-shell iron nanoparticles from decomposition of Fe-Sn nanocomposite and studies on their microwave absorption properties,” Journal of Nanoparticle Research, vol. 14, no. 12, article no. 1271, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Sharma, S. Mantri, and D. Bahadur, “Study of carbon encapsulated iron oxide/iron carbide nanocomposite for hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 324, no. 23, pp. 3975–3980, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Zhang, C. Liang, J. Liu, Z. Tian, and G. Shao, “The formation of onion-like carbon-encapsulated cobalt carbide core/shell nanoparticles by the laser ablation of metallic cobalt in acetone,” Carbon, vol. 55, pp. 108–115, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. O. Łabędź, A. Grabias, W. Kaszuwara, and M. Bystrzejewski, “Influence of Al on synthesis and properties of carbon-encapsulated iron nanoparticles,” Journal of Alloys and Compounds, vol. 603, pp. 230–238, 2014. View at Publisher · View at Google Scholar
  47. A. Mostofizadeh, Y. Li, B. Song, and Y. Huang, “Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials,” Journal of Nanomaterials, vol. 2011, Article ID 685081, 21 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Shigeta and A. B. Murphy, “Thermal plasmas for nanofabrication,” Journal of Physics D: Applied Physics, vol. 44, no. 17, Article ID 174025, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Bertran-Serra and M. J. Inestrosa-Izurieta, “Method and reactor for the production of carbon-coated nanoparticles,” Patent, Barcelona, Spain, 2012.
  50. M. R. Sanaee, O. Arteaga, and E. Bertran, “Influence of plasma reactor parameters on carbon coating of iron nanoparticle,” in Proceedings of the International Conference on Nanoscience and Nanotechnology, p. 9, Phantoms Foundation, Madrid, Spain, 2014.
  51. N. Aguiló-Aguayo, Z. Liu, E. Bertran, and J. Yang, “Thermal-induced structural evolution of carbon-encapsulated iron nanoparticles generated by two different methods,” The Journal of Physical Chemistry C, vol. 117, no. 37, pp. 19167–19174, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Gutsch, M. Krämer, G. Michael, H. Mühlenweg, M. Pridöhl, and G. Zimmermann, “Gas-phase production of nanoparticles,” KONA Powder and Particle Journal, vol. 20, pp. 24–37, 2002. View at Publisher · View at Google Scholar
  53. A. D. Gerdeman, Arc Plasma Technology in Materials Science, Springer, Berlin, Germany, 1972.
  54. B. F. Gordiets, M. J. Inestrosa-Izurieta, A. Navarro, and E. Bertran, “Nanoparticles in SiH4-Ar plasma: modelling and comparison with experimental data,” Journal of Applied Physics, vol. 110, no. 10, Article ID 103302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. S. J. Lee, J. Jung, M. A. Kim, Y.-R. Kim, and J. K. Park, “Synthesis of highly stable graphite-encapsulated metal (Fe, Co, and Ni) nanoparticles,” Journal of Materials Science, vol. 47, no. 23, pp. 8112–8117, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. V. A. Sethuraman, L. J. Hardwick, V. Srinivasan, and R. Kostecki, “Surface structural disordering in graphite upon lithium intercalation/deintercalation,” Journal of Power Sources, vol. 195, no. 11, pp. 3655–3660, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Zhao, R. Hong, Z. Luo, H. Lu, and B. Yan, “Carbon nanostructures production by AC arc discharge plasma process at atmospheric pressure,” Journal of Nanomaterials, vol. 2011, Article ID 346206, 6 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. S. S. Kader, D. P. Paul, and S. M. Hoque, “Effect of temperature on the structural and magnetic properties of CuFe2O4 nano particle prepared by chemical co-precipitation method,” International Journal of Materials, Mechanics and Manufacturing, vol. 2, no. 1, pp. 5–8, 2014. View at Publisher · View at Google Scholar
  59. T. Sato, T. Iijima, M. Seki, and N. Inagaki, “Magnetic properties of ultrafine ferrite particles,” Journal of Magnetism and Magnetic Materials, vol. 65, no. 2-3, pp. 252–256, 1987. View at Publisher · View at Google Scholar · View at Scopus
  60. P. Dutta, S. Pal, M. S. Seehra, N. Shah, and G. P. Huffman, “Size dependence of magnetic parameters and surface disorder in magnetite nanoparticles,” Journal of Applied Physics, vol. 105, no. 7, Article ID 07B501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. R. D. Sánchez, J. Rivas, P. Vaqueiro, M. A. López-Quintela, and D. Caeiro, “Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol-gel method,” Journal of Magnetism and Magnetic Materials, vol. 247, no. 1, pp. 92–98, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. M. S. Seehra, V. Singh, P. Dutta et al., “Size-dependent magnetic parameters of fcc FePt nanoparticles: applications to magnetic hyperthermia,” Journal of Physics D: Applied Physics, vol. 43, no. 14, Article ID 145002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Jafari, K. Boustani, and S. F. Shayesteh, “Effect of carbon shell on the structural and magnetic properties of Fe3O4 superparamagnetic nanoparticles,” Journal of Superconductivity and Novel Magnetism, vol. 27, no. 1, pp. 187–194, 2014. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Bittova, J. Poltierova-Vejpravova, A. Roca, M. Morales, and V. Tyrpekl, “Effects of coating on magnetic properties in iron oxide nanoparticles,” Journal of Physics: Conference Series, vol. 200, Article ID 072012, 2010. View at Publisher · View at Google Scholar
  65. C. G. Hadjipanayis, M. J. Bonder, S. Balakrishnan, X. Wang, H. Mao, and G. C. Hadjipanayis, “Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia,” Small, vol. 4, no. 11, pp. 1925–1929, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Lee, J. Lee, C. J. Bae et al., “Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions,” Advanced Functional Materials, vol. 15, no. 3, pp. 503–509, 2005. View at Publisher · View at Google Scholar · View at Scopus