Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2015 (2015), Article ID 535319, 11 pages
http://dx.doi.org/10.1155/2015/535319
Research Article

Synthesis of Metal Oxide Decorated Polycarboxyphenyl Polymer-Grafted Multiwalled Carbon Nanotube Composites by a Chemical Grafting Approach for Supercapacitor Application

1Department of Chemistry, Hannam University, Daejeon 305-811, Republic of Korea
2Department of Polymer Science and Engineering, Hannam University, Daejeon 305-811, Republic of Korea

Received 5 January 2015; Revised 16 March 2015; Accepted 19 March 2015

Academic Editor: Zhonghua Xiang

Copyright © 2015 Do-Yeon Kang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We present grafting of polycarboxyphenyl polymer on the surface of multiwalled carbon nanotube (MWCNT) via a free radical polymerization and subsequent anchoring of the metal oxide nanoparticles for the evaluation of their potential applicability to supercapacitor electrodes. Here, metal oxide nanoparticles, Fe3O4 and Sm2O3, were created after the oxidation of metal precursors Sm(NO3)3 and FeCl2, respectively, and attached on the surface of polycarboxyphenyl-grafted MWCNT (P-CNT) in aqueous medium. This approach shows a potential for enhancing the dispersion of Fe3O4 and Sm2O3 nanoparticles on the wall of P-CNT. The structure and morphological characteristics of the purified MWCNT, P-CNT, and metal oxide-anchored polycarboxyphenyl-grafted MWCNT (MP-CNT) nanocomposites were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The electrochemical performance of the purified MWCNT electrode, P-CNT electrode, and MP-CNT electrodes was tested by cyclic voltammetry (CV) and galvanostatic charge discharge in a 1.0 M H2SO4 aqueous electrolyte. The results showed that the specific capacitance of the purified MWCNT was 45.3 F/g at the scan rate of 5 mV/s and increased to 54.1 F/g after the modification with polycarboxyphenyl polymer. Further modification of P-CNT with Sm2O3 and Fe3O4 improved the specific capacitance of 65.84 F/g and 173.38 F/g, respectively, at the same scan rate.