Review Article

SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries and Supercapacitors

Table 1

Summary of various methods for SnO2-based nanostructure synthesis.

Structure typeMethodMatrixGrowth reagentGrowth conditionReference

SnO2 nanosheetsHydrothermal methodIn solutionSnCl2·2H2O, C6H5Na3O·2H2O
ethanol, water
Autoclave 180°C, 8 h[2]
3D SnO2 nanoflowersHydrothermal methodTi foilSnCl4·5H2O, NaOH, waterAutoclave 200°C
(2, 4, 8, 16 h)
[9]
Zn-doped SnO2 nanorodsHydrothermal methodIn solutionSnCl4·5H2O, ZnCl2, NaOH, ethanol, waterAutoclave 200°C, 24 h[14]
Single-crystalline SnO2 nanorodsHydrothermal methodIn solutionSnCl4·5H2O, alcohol, waterAutoclave 150°C, 24 h[16]
SnO2 hollow microspheresHydrothermal methodIn solutionSnCl4·5H2O, carbamide, waterAutoclave 160°C, 16 h[29]
Porous SnO2 nanotubesTemplate methodIn solutionMnSO4·H2O,
SnCl2·2H2O, HCL
Autoclave 160°C, 12 h[11]
SnO2 hollow microspheresTemplate methodIn solutionSnCl2, H2O2, NaOH, N4Autoclave 200°C, 30 h[36]
Pd-Loaded SnO2 Yolk-Shell nanostructuresSpray pyrolysisSpray solutionC2O4Sn, Pd·H2O, C12H22O11, HNO3Air flow rate 10 Lmin−1, 1000°C[38]
SnO2 nanoparticlesSpray pyrolysisSpray solutionSnCl4·5H2OAir flow rate 17 kg/m2, 673 K and 1073 K [39]
SnO2 powdersSpray pyrolysisSpray solutionSnCl4·5H2O, citric acid, ethylene glycolsGas flow rate 40 L/min, 900°C [40]
Tin Oxide nanowires, nanoribbons, and nanotubesHigh temperature thermal oxide methodGasSn foil + SnO-
layered
N2 flow gas
Lindberg blue tube
furnace configuration 1050–1150°C
[18]