Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2015, Article ID 851928, 10 pages
http://dx.doi.org/10.1155/2015/851928
Research Article

Dominating Role of Ionic Strength in the Sedimentation of Nano-TiO2 in Aquatic Environments

1School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
2School of Civil and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
3Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

Received 31 July 2015; Accepted 27 September 2015

Academic Editor: Lutz Mädler

Copyright © 2015 Guang’an He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. S. Allen, M. Edge, G. Sandoval, J. Verran, J. Stratton, and J. Maltby, “Photocatalytic coatings for environmental applications,” Photochemistry and Photobiology, vol. 81, no. 2, pp. 279–290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. I. K. Konstantinou and T. A. Albanis, “TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review,” Applied Catalysis B: Environmental, vol. 49, no. 1, pp. 1–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Balasubramanian, D. D. Dionysiou, M. T. Suidan, I. Baudin, and J.-M. Laîné, “Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water,” Applied Catalysis B: Environmental, vol. 47, no. 2, pp. 73–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. M. M. Higarashi and W. F. Jardim, “Remediation of pesticide contaminated soil using TiO2 mediated by solar light,” Catalysis Today, vol. 76, no. 2–4, pp. 201–207, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Yu, M. Jaroniec, H. Yu, and W. Fan, “Synthesis, characterization, properties, and applications of nanosized photocatalytic materials,” Journal of Nanomaterials, vol. 2012, Article ID 783686, 3 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Kaida, K. Kobayashi, M. Adachi, and F. Suzuki, “Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics,” Journal of Cosmetic Science, vol. 55, no. 2, pp. 219–220, 2004. View at Google Scholar · View at Scopus
  7. A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, and N. Von Goetz, “Titanium dioxide nanoparticles in food and personal care products,” Environmental Science and Technology, vol. 46, no. 4, pp. 2242–2250, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. A.-P. Zhang and Y.-P. Sun, “Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells,” World Journal of Gastroenterology, vol. 10, no. 21, pp. 3191–3193, 2004. View at Google Scholar · View at Scopus
  9. J.-R. Gurr, A. S. S. Wang, C.-H. Chen, and K.-Y. Jan, “Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells,” Toxicology, vol. 213, no. 1-2, pp. 66–73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. W. G. Wamer, J.-J. Yin, and R. R. Wei, “Oxidative damage to nucleic acids photosensitized by titanium dioxide,” Free Radical Biology and Medicine, vol. 23, no. 6, pp. 851–858, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. T. C. Long, N. Saleh, R. D. Tilton, G. V. Lowry, and B. Veronesi, “Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity,” Environmental Science and Technology, vol. 40, no. 14, pp. 4346–4352, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. D. B. Warheit, T. R. Webb, C. M. Sayes, V. L. Colvin, and K. L. Reed, “Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area,” Toxicological Sciences, vol. 91, no. 1, pp. 227–236, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. G. He, H. Liu, R. Chen, and C. Wang, “Transport behavior of engineered nanosized photocatalytic materials in water,” Journal of Nanomaterials, vol. 2013, Article ID 856387, 13 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Pettibone, D. M. Cwiertny, M. Scherer, and V. H. Grassian, “Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation,” Langmuir, vol. 24, no. 13, pp. 6659–6667, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. R. A. French, A. R. Jacobson, B. Kim, S. L. Isley, L. Penn, and P. C. Baveye, “Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles,” Environmental Science and Technology, vol. 43, no. 5, pp. 1354–1359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Ottofuelling, F. von der Kammer, and T. Hofmann, “Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behavior,” Environmental Science and Technology, vol. 45, no. 23, pp. 10045–10052, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. A. Keller, H. Wang, D. Zhou et al., “Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices,” Environmental Science and Technology, vol. 44, no. 6, pp. 1962–1967, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. F. Domingos, N. Tufenkji, and K. J. Wilkinson, “Aggregation of titanium dioxide nanoparticles: role of a fulvic acid,” Environmental Science and Technology, vol. 43, no. 5, pp. 1282–1286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Chowdhury, D. M. Cwiertny, and S. L. Walker, “Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria,” Environmental Science and Technology, vol. 46, no. 13, pp. 6968–6976, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Zhang, Y. Chen, P. Westerhoff, and J. Crittenden, “Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles,” Water Research, vol. 43, no. 17, pp. 4249–4257, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Jiang, B. Xu, Y. Lü, C. Liu, and M. Liu, “Experimental analysis on the variable polarity plasma arc pressure,” Chinese Journal of Mechanical Engineering, vol. 24, no. 4, pp. 607–611, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Deng, G. Zhang, X. Xu, G. Tao, and J. Dai, “Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation,” Journal of Hazardous Materials, vol. 182, no. 1, pp. 217–224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. K. L. Chen and M. Elimelech, “Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions,” Journal of Colloid and Interface Science, vol. 309, no. 1, pp. 126–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. El Badawy, T. P. Luxton, R. G. Silva, K. G. Scheckel, M. T. Suidan, and T. M. Tolaymat, “Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions,” Environmental Science and Technology, vol. 44, no. 4, pp. 1260–1266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. R. L. Johnson, G. O. B. Johnson, J. T. Nurmi, and P. G. Tratnyek, “Natural organic matter enhanced mobility of nano zerovalent iron,” Environmental Science and Technology, vol. 43, no. 14, pp. 5455–5460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Fang, X.-Q. Shan, B. Wen, J.-M. Lin, and G. Owens, “Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns,” Environmental Pollution, vol. 157, no. 4, pp. 1101–1109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. K. A. D. Guzmán, M. P. Finnegan, and J. F. Banfield, “Influence of surface potential on aggregation and transport of titania nanoparticles,” Environmental Science and Technology, vol. 40, no. 24, pp. 7688–7693, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. B. V. Derjaguin and L. Landau, “Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes,” Progress in Surface Science, vol. 43, no. 1–4, pp. 30–59, 1993. View at Publisher · View at Google Scholar · View at Scopus
  29. W. B. Hardy, “A preliminary investigation of the conditions which determine the stability of irreversible hydrosols,” Journal of Physical Chemistry, vol. 4, no. 4, pp. 235–253, 1899. View at Publisher · View at Google Scholar · View at Scopus
  30. T. L. VanPool and R. D. Leonard, Quantitative Analysis in Archaeology, Wiley-Blackwell, Oxford, UK, 2010. View at Publisher · View at Google Scholar