Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2015, Article ID 963012, 6 pages
http://dx.doi.org/10.1155/2015/963012
Research Article

A Novel Porous Carrier Found in Nature for Nanocomposite Materials Preparation: A Case Study of Artemia Egg Shell-Supported TiO2 for Formaldehyde Removal

Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China

Received 17 July 2014; Revised 20 August 2014; Accepted 20 August 2014

Academic Editor: Xinqing Chen

Copyright © 2015 Sufeng Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X.-P. Liao and B. Shi, “Adsorption of fluoride on zirconium(IV)-impregnated collagen fiber,” Environmental Science & Technology, vol. 39, no. 12, pp. 4628–4632, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. B. C. Pan, Q. R. Zhang, W. M. Zhang et al., “Highly effective removal of heavy metals by polymer-based zirconium phosphate: a case study of lead ion,” Journal of Colloid and Interface Science, vol. 310, no. 1, pp. 99–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Samatya, Ü. Yüksel, M. Yüksel, and N. Kabay, “Removal of fluoride from water by metal ions (Al3+, La3+ and ZrO2+) loaded natural zeolite,” Separation Science and Technology, vol. 42, no. 9, pp. 2033–2047, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Q. Zhang, P. Jiang, B. Pan, W. Zhang, and L. Lv, “Impregnating zirconium phosphate onto porous polymers for lead removal from waters: effect of nanosized particles and polymer chemistry,” Industrial & Engineering Chemistry Research, vol. 48, no. 9, pp. 4495–4499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Chen, Z. Y. Zhang, C. P. Feng, M. Li, D. Zhu, and N. Sugiura, “Studies on fluoride adsorption of iron-impregnated granular ceramics from aqueous solution,” Materials Chemistry and Physics, vol. 125, no. 1-2, pp. 293–298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Tavallali and A. Daneshyar, “Cadmium selenide nanoparticles loaded on activated carbon and its efficient application for removal of fluoride from aqueous solution,” International Journal of ChemTech Research, vol. 4, no. 3, pp. 1178–1181, 2012. View at Google Scholar · View at Scopus
  7. Q. R. Zhang, B. C. Pan, S. J. Zhang, J. Wang, W. Zhang, and L. Lv, “New insights into nanocomposite adsorbents for water treatment: a case study of polystyrene-supported zirconium phosphate nanoparticles for lead removal,” Journal of Nanoparticle Research, vol. 13, no. 10, pp. 5355–5364, 2011. View at Publisher · View at Google Scholar
  8. G. van Stappen, “Zoogeography,” in Artemia: Basic and Applied Biology, T. J. Abatzopoulos, J. A. Beardmore, J. S. Clegg, and P. Sorgeloos, Eds., pp. 171–224, Kluwer Academic Publishers, Dodrecht, The Netherlands, 2002. View at Google Scholar
  9. S. Wang and S. Sun, “Comparative observations on the cyst shells of seven Artemia strains from China,” Microscopy Research and Technique, vol. 70, no. 8, pp. 663–670, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. E. Morris and B. A. Afzelius, “The structure of the shell and outer membranes in encysted Artemia salina embryos during cryptobiosis and development,” Journal of Ultrasructure Research, vol. 20, no. 3-4, pp. 244–259, 1967. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Anderson, J. H. Lochhead, M. S. Lochhead, and E. Huebner, “The origin and structure of the tertiary envelope in thick-shelled eggs of the brine shrimp, Artemia,” Journal of Ultrasructure Research, vol. 32, no. 5-6, pp. 497–525, 1970. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Mazzini, “Scanning electron microscope morphology and amino-acid analysis of the egg-shell of encysted brine shrimp, Artemia salina Leach (Crustacea Anostraca),” Monitore Zoologico Italiano—Italian Journal of Zoology, vol. 12, no. 4, pp. 243–252, 1978. View at Google Scholar
  13. K. W. Lee, M. A. Gouthro, D. Belk, and J. R. Rosowski, “Ultrastructure features of the tertiary envelope in the cyst of the brine shrimp Artemia franciscana (Anostraca),” in Proceeding of the 52nd Annual Meeting of the Microscopy Society of America, G. W. Bailey and A. J. Garratt-Reed, Eds., pp. 362–363, San Francisco Press, San Francisco, Calif, USA, August 1994. View at Scopus
  14. T. Iwasaki, “Tolerance of Artemia dry eggs for temperature, vacuum and radiation,” Bulletin de l'Institute International du Froid—Annexe, vol. 5, pp. 79–88, 1973. View at Google Scholar
  15. J. S. Clegg, “Desiccation tolerance in encysted embryos of the animal extremophile, Artemia,” Integrative and Comparative Biology, vol. 45, no. 5, pp. 715–724, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. B. J. Finlayson-Pitts and J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications, Academic Press, San Diego, Calif, USA, 2000.
  17. C. M. Schmidt, A. M. Buchbinder, E. Weitz, and F. M. Geiger, “Photochemistry of the indoor air pollutant acetone on Degussa P25 TiO2 studied by chemical ionization mass spectrometry,” The Journal of Physical Chemistry A, vol. 111, no. 50, pp. 13023–13031, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. U. Diebold, “The surface science of titanium dioxide,” Surface Science Reports, vol. 48, no. 5-8, pp. 53–229, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Ding, H. Y. Zhu, G. Q. Lu, and P. F. Greenfield, “Photocatalytic properties of titania pillared clays by different drying methods,” Journal of Colloid and Interface Science, vol. 209, no. 1, pp. 193–199, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Rapsomanikis, D. Papoulis, D. Panagiotaras et al., “Nanocrystalline TiO2 and halloysite clay mineral composite films prepared by sol-gel method: synergistic effect and the case of silver modification to the photocatalytic degradation of basic blue-41 azo dye in water,” Global NEST Journal, vol. 16, no. 3, pp. 485–498, 2014. View at Google Scholar
  21. P. Wang, T. Xie, D. Wang, and S. Dong, “Facile synthesis of TiO2(B) crystallites/nanopores structure: a highly efficient photocatalyst,” Journal of Colloid and Interface Science, vol. 350, no. 2, pp. 417–420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Tieng, A. Kanaev, and K. Chhor, “New homogeneously doped Fe(III)-TiO2 photocatalyst for gaseous pollutant degradation,” Applied Catalysis A: General, vol. 399, no. 1-2, pp. 191–197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. Y.-F. Tu, S.-Y. Huang, J.-P. Sang, and X.-W. Zou, “Preparation of Fe-doped TiO2 nanotube arrays and their photocatalytic activities under visible light,” Materials Research Bulletin, vol. 45, no. 2, pp. 224–229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. R. M. Mohamed, D. L. McKinney, and W. M. Sigmund, “Enhanced nanocatalysts,” Materials Science and Engineering R: Reports, vol. 73, no. 1, pp. 1–13, 2012. View at Publisher · View at Google Scholar · View at Scopus