Research Article

Nanoscale Continuum Modelling of Carbon Nanotubes by Polyhedral Finite Elements

Table 1

Comparative study on Young’s modulus.

MethodReferencesYearRemarksWall thickness (nm)Young’s modulus (TPa)

ExperimentalWong et al. [3]19971.28

AMHernández et al. [14]1998Tight binding (MD)0.341.24
Goze et al. [15]1999Tight binding (MD)0.341.24
Jin and Yuan [16]2003Energy approach (MD)0.341.238
Jin and Yuan [16]2003Force approach (MD)0.341.35
Peng et al. [17]2006Ab initio0.341.23–1.36
Cai et al. [18]2009Tight binding (MD) and ab initio0.95–1.33 (MD) and 1.02 (ab initio)

CMGiannopoulos et al. [19]2008FEM spring elements0.341.2478

NCMRafiee and Heidarhaei [20]2012FEM nonlinear spring elements0.341.325
[2129]2003–2015FEM beam element0.340.81–1.4
Al-Kharusi et al. [30]2016FEM beam elementOther than 0.341.27 ± 0.02
Current work2016Polyhedral FEM0.340.953–1.22 (Armchair, n = 6, 7, 8. Length = 0.74 nm–6.27 nm). 1.268–1.41
(Armchair, n = 3, 4, 5. Length = 6.27 nm).
0.965–1.338
(Zigzag, n = 6, 7, 8. Length = 1.14 nm–10.72 nm).
1.257–1.338
(Zigzag, n = 6, 7, 8. Length = 10.72 nm).
Average steady state value: 1.2 for armchair
Average steady state value: 1.3 for zigzag

Combined (AM and NCM)Cheng et al. [21]2009MD and FEM (using spring and beam elements)0.341.2, 1.4

Notes: AM: atomistic modelling, CM: continuum modelling, and NCM: nanoscale continuum modelling.