Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2016 (2016), Article ID 6709764, 9 pages
http://dx.doi.org/10.1155/2016/6709764
Research Article

Particle Size-Dependent Antibacterial Activity and Murine Cell Cytotoxicity Induced by Graphene Oxide Nanomaterials

1Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
2IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
3College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

Received 31 March 2016; Accepted 11 May 2016

Academic Editor: Shiren Wang

Copyright © 2016 Lin Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Recent studies have indicated that graphene and its derivative graphene oxide (GO) engage in a wide range of antibacterial activities with limited toxicity to human cells. Here, we systematically evaluate the dependence of GO toxicity on the size of the nanoparticles used in treatments: we compare the cytotoxic effects of graphene quantum dots (GQDs, <15 nm), small GOs (SGOs, 50–200 nm), and large GOs (LGOs, 0.5–3 μm). We synthesize the results of bacterial colony count assays and SEM-based observations of morphological changes to assess the antibacterial properties that these GOs bring into effect against E. coli. We also use Live/Dead assays and morphological analysis to investigate changes to mammalian (Murine macrophage-like Raw 264.7) cells induced by the presence of the various GO particle types. Our results demonstrate that LGOs, SGOs, and GQDs possess antibacterial activities and cause mammalian cell cytotoxicity at descending levels of potency. Placing our observations in the context of previous simulation results, we suggest that both the lateral size and surface area of GO particles contribute to cytotoxic effects. We hope that the size dependence elucidated here provides a useful schematic for tuning GO-cell interactions in biomedical applications.