Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2017 (2017), Article ID 1734643, 9 pages
https://doi.org/10.1155/2017/1734643
Research Article

Bimetallic Oxide Nanohybrid Synthesized from Diatom Frustules for the Removal of Selenium from Water

Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA

Correspondence should be addressed to Somenath Mitra; ude.tijn@artim.htanemos

Received 15 July 2017; Revised 23 November 2017; Accepted 27 November 2017; Published 31 December 2017

Academic Editor: Amit Bhatnagar

Copyright © 2017 Megha Thakkar and Somenath Mitra. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Sharma and R. Singh, “Selenium in Soil, Plant, and Animal Systems,” C R C Critical Reviews in Environmental Control, vol. 13, no. 1, pp. 23–50, 1983. View at Publisher · View at Google Scholar · View at Scopus
  2. H. M. Ohlendorf, “Bioaccumulation and effects of selenium in wildlife,” in Selenium in Agriculture and the Environment(seleniuminagric), pp. 133–177, 1989. View at Google Scholar
  3. D. Strawn, H. Doner, M. Zavarin, and S. McHugo, “Microscale investigation into the geochemistry of arsenic, selenium, and iron in soil developed in pyritic shale materials,” Geoderma, vol. 108, no. 3-4, pp. 237–257, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. C. M. Gonzalez, J. Hernandez, J. R. Peralta-Videa, C. E. Botez, J. G. Parsons, and J. L. Gardea-Torresdey, “Sorption kinetic study of selenite and selenate onto a high and low pressure aged iron oxide nanomaterial,” Journal of Hazardous Materials, vol. 211-212, pp. 138–145, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. M. G. C. Fernandez, M. A. Palacios, and C. Camara, “Flow-injection and continuous-flow systems for the determination of Se(IV) and Se(VI) by hydride generation atomic absorption spectrometry with on-line prereduction of Se(VI) to Se(IV),” Analytica Chimica Acta, vol. 283, no. 1, pp. 386–392, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Santos, G. Ungureanu, R. Boaventura, and C. Botelho, “Selenium contaminated waters: an overview of analytical methods, treatment options and recent advances in sorption methods,” Science of the Total Environment, vol. 521-522, no. 1, pp. 246–260, 2015. View at Publisher · View at Google Scholar · View at Scopus
  7. W. T. Frankenberger Jr. and M. Arshad, “Bioremediation of selenium-contaminated sediments and water,” BioFactors, vol. 14, no. 1-4, pp. 241–254, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Mavrov, S. Stamenov, E. Todorova, H. Chmiel, and T. Erwe, “New hybrid electrocoagulation membrane process for removing selenium from industrial wastewater,” Desalination, vol. 201, no. 1-3, pp. 290–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. E. I. El-Shafey, “Removal of Se(IV) from aqueous solution using sulphuric acid-treated peanut shell,” Journal of Environmental Management, vol. 84, no. 4, pp. 620–627, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. O. M. Sharrad, H. Liu, and M. Fan, “Evaluation of FeOOH performance on selenium reduction,” Separation and Purification Technology, vol. 84, pp. 29–34, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Das, D. Das, G. P. Dash, and K. M. Parida, “Studies on Mg/Fe hydrotalcite-like-compound (HTlc): I. Removal of inorganic selenite (SeO32−) from aqueous medium,” Journal of Colloid and Interface Science, vol. 251, no. 1, pp. 26–32, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Duc, G. Lefèvre, and M. Fédoroff, “Sorption of selenite ions on hematite,” Journal of Colloid and Interface Science, vol. 298, no. 2, pp. 556–563, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Martínez, J. Giménez, J. De Pablo, M. Rovira, and L. Duro, “Sorption of selenium(IV) and selenium(VI) onto magnetite,” Applied Surface Science, vol. 252, no. 10, pp. 3767–3773, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Zhang, L.-S. Lin, and D. Gang, “Adsorptive selenite removal from water using iron-coated GAC adsorbents,” Water Research, vol. 42, no. 14, pp. 3809–3816, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. M. Gonzalez, J. Hernandez, J. G. Parsons, and J. L. Gardea-Torresdey, “A study of the removal of selenite and selenate from aqueous solutions using a magnetic iron/manganese oxide nanomaterial and ICP-MS,” Microchemical Journal, vol. 96, no. 2, pp. 324–329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Zhang and E. J. Reardon, “Removal of B, Cr, Mo, and Se from wastewater by incorporation into hydrocalumite and ettringite,” Environmental Science & Technology, vol. 37, no. 13, pp. 2947–2952, 2003. View at Google Scholar
  17. T. Roussel, C. Bichara, and R. J.-M. Pellenq, “Selenium and carbon nanostructures in the pores of AlPO4-5,” Adsorption, vol. 11, no. 1, pp. 709–714, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Bonhoure, I. Baur, E. Wieland, C. A. Johnson, and A. M. Scheidegger, “Uptake of Se(IV/VI) oxyanions by hardened cement paste and cement minerals: An X-ray absorption spectroscopy study,” Cement and Concrete Research, vol. 36, no. 1, pp. 91–98, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Sun, W. Pan, F. Wang, and N. Xu, “Removal of Se(IV) and Se(VI) by MFe2O4 nanoparticles from aqueous solution,” Chemical Engineering Journal, vol. 273, pp. 353–362, 2015. View at Publisher · View at Google Scholar · View at Scopus
  20. Y.-T. Chan, W.-H. Kuan, Y.-M. Tzou et al., “Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal,” Scientific Reports, vol. 6, Article ID 24716, 2016. View at Publisher · View at Google Scholar · View at Scopus
  21. C.-G. Lee and S.-B. Kim, “Removal of arsenic and selenium from aqueous solutions using magnetic iron oxide nanoparticle/multi-walled carbon nanotube adsorbents,” Desalination and Water Treatment, vol. 57, no. 58, pp. 28323–28339, 2016. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Cui, P. Z. Li, S. Wang, Y. Zheng, and Zhang., “Adsorption study of selenium ions from aqueous solutions using MgO nanosheets synthesized by ultrasonic method,” Journal of Hazardous Materials, vol. 341, Supplement C, pp. 268–276, 2018. View at Google Scholar
  23. Z. Ma, C. Shan, J. Liang, and M. Tong, “Efficient adsorption of Selenium(IV) from water by hematite modified magnetic nanoparticles,” Chemosphere, pp. 134–141, 2017. View at Publisher · View at Google Scholar
  24. X. Zhao, L. Lv, B. Pan, W. Zhang, S. Zhang, and Q. Zhang, “Polymer-supported nanocomposites for environmental application: A review,” Chemical Engineering Journal, vol. 170, no. 2-3, pp. 381–394, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Ali Atieh, “Removal of chromium (VI) from polluted water using carbon nanotubes supported with activated carbon,” in Proceedings of the Urban Environmental Pollution 2010, pp. 281–293, USA, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Sinha Ray, K. Yamada, M. Okamoto, A. Ogami, and K. Ueda, “New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials,” Chemistry of Materials, vol. 15, no. 7, pp. 1456–1465, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Caparrós, M. Benelmekki, P. M. Martins et al., “Hydrothermal assisted synthesis of iron oxide-based magnetic silica spheres and their performance in magnetophoretic water purification,” Materials Chemistry and Physics, vol. 135, no. 2-3, pp. 510–517, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Ferroudj, J. Nzimoto, A. Davidson et al., “Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants,” Applied Catalysis B: Environmental, vol. 136-137, pp. 9–18, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Kokate, K. Garadkar, and A. Gole, “One pot synthesis of magnetite-silica nanocomposites: applications as tags, entrapment matrix and in water purification,” Journal of Materials Chemistry A, vol. 1, no. 6, pp. 2022–2029, 2013. View at Google Scholar
  30. Z. Liu, H. Wang, C. Liu et al., “Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions,” Chemical Communications, vol. 48, no. 59, pp. 7350–7352, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Yu, S. Tong, M. Ge, J. Zuo, C. Cao, and W. Song, “One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal,” Journal of Materials Chemistry A, vol. 1, no. 3, pp. 959–965, 2013. View at Google Scholar
  32. Y.-C. Chang and D.-H. Chen, “Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions,” Journal of Colloid and Interface Science, vol. 283, no. 2, pp. 446–451, 2005. View at Publisher · View at Google Scholar
  33. Y.-T. Zhou, H.-L. Nie, C. Branford-White, Z.-Y. He, and L.-M. Zhu, “Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid,” Journal of Colloid and Interface Science, vol. 330, no. 1, pp. 29–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Hansen, P. Kwan, M. M. Benjamin, L. I. Chi-Wang, and G. V. Korshin, “Use of iron oxide-coated sand to remove strontium from simulated Hanford tank wastes,” Environmental Science & Technology, vol. 35, no. 24, pp. 4905–4909, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Ding, X. Yang, W. Liu, Y. Chang, and C. Shang, “Removal of natural organic matter using surfactant-modified iron oxide-coated sand,” Journal of Hazardous Materials, vol. 174, no. 1-3, pp. 567–572, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Ge, M. Li, H. Ye, and B. Zhao, “Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles,” Journal of Hazardous Materials, vol. 211-212, pp. 366–372, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Z. M. Badruddoza, Z. B. Z. Shawon, W. J. D. Tay, K. Hidajat, and M. S. Uddin, “Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater,” Carbohydrate Polymers, vol. 91, no. 1, pp. 322–332, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Farrukh, A. A. Akram, S. Ghaffar et al., “Design of polymer-brush-grafted magnetic nanoparticles for highly efficient water remediation,” ACS Applied Materials & Interfaces, vol. 5, no. 9, pp. 3784–3793, 2013. View at Google Scholar
  39. S. Addo Ntim and S. Mitra, “Removal of trace arsenic to meet drinking water standards using iron oxide coated multiwall carbon nanotubes,” Journal of Chemical & Engineering Data, vol. 56, no. 5, pp. 2077–2083, 2011. View at Google Scholar
  40. V. K. Gupta, S. Agarwal, and T. A. Saleh, “Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal,” Journal of Hazardous Materials, vol. 185, no. 1, pp. 17–23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Addo Ntim and S. Mitra, “Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification,” Journal of Colloid and Interface Science, vol. 375, no. 1, pp. 154–159, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Yang, Z. Guo, G. Sheng, and X. Wang, “Application of a novel plasma-induced CD/MWCNT/iron oxide composite in zinc decontamination,” Carbohydrate Polymers, vol. 90, no. 2, pp. 1100–1105, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Mishra, A. P. Arukha, T. Bashir, D. Yadav, and G. B. K. S. Prasad, “All new faces of diatoms: potential source of nanomaterials and beyond,” Frontiers in Microbiology, vol. 8, 2017. View at Publisher · View at Google Scholar
  44. F. E. Round, R. M. Crawford, and D. G. Mann, The Diatoms: Biology & Morphology of the Genera, Cambridge University Press, Cambridge, UK, 1990.
  45. C. E. Hamm, R. Merkel, O. Springer et al., “Architecture and material properties of diatom shells provide effective mechanical protection,” Nature, vol. 421, no. 6925, pp. 841–843, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Losic, G. Triani, P. J. Evans, A. Atanacio, J. G. Mitchell, and N. H. Voelcker, “Controlled pore structure modification of diatoms by atomic layer deposition of TiO2,” Journal of Materials Chemistry, vol. 16, no. 41, pp. 4029–4034, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Wang, J. Cai, Y. Jiang, X. Jiang, and D. Zhang, “Preparation of biosilica structures from frustules of diatoms and their applications: Current state and perspectives,” Applied Microbiology and Biotechnology, vol. 97, no. 2, pp. 453–460, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Losic, G. Rosengarten, J. G. Mitchell, and N. H. Voelcker, “Pore architecture of diatom frustules: Potential nanostructured membranes for molecular and particle separations,” Journal of Nanoscience and Nanotechnology, vol. 6, no. 4, pp. 982–989, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. Z. Bao, M. R. Weatherspoon, S. Shian et al., “Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas,” Nature, vol. 446, no. 7132, pp. 172–175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Jeffryes, J. Campbell, H. Li, J. Jiao, and G. Rorrer, “The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices,” Energy & Environmental Science, vol. 4, no. 10, pp. 3930–3941, 2011. View at Google Scholar
  51. Y. Wang, D. Zhang, J. Pan, and J. Cai, “Key factors influencing the optical detection of biomolecules by their evaporative assembly on diatom frustules,” Journal of Materials Science, vol. 47, no. 17, pp. 6315–6325, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. M. S. Aw, S. Simovic, Y. Yu, J. Addai-Mensah, and D. Losic, “Porous silica microshells from diatoms as biocarrier for drug delivery applications,” Powder Technology, vol. 223, pp. 52–58, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Gélabert, O. S. Pokrovsky, J. Schott et al., “Study of diatoms/aqueous solution interface. I. Acid-base equilibria and spectroscopic observation of freshwater and marine species,” Geochimica et Cosmochimica Acta, vol. 68, no. 20, pp. 4039–4058, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Gélabert, O. S. Pokrovsky, J. Schott, A. Boudou, and A. Feurtet-Mazel, “Cadmium and lead interaction with diatom surfaces: A combined thermodynamic and kinetic approach,” Geochimica et Cosmochimica Acta, vol. 71, no. 15, pp. 3698–3716, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Chubar, “New inorganic (an)ion exchangers based on Mg-Al hydrous oxides: (Alkoxide-free) sol-gel synthesis and characterisation,” Journal of Colloid and Interface Science, vol. 357, no. 1, pp. 198–209, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Szlachta, V. Gerda, and N. Chubar, “Adsorption of arsenite and selenite using an inorganic ion exchanger based on Fe-Mn hydrous oxide,” Journal of Colloid and Interface Science, vol. 365, no. 1, pp. 213–221, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. T. M. Suzuki, M. L. Tanco, D. A. P. Tanaka, H. Matsunaga, and T. Yokoyama, “Adsorption characteristics and removal of oxo-anions of arsenic and selenium on the porous polymers loaded with monoclinic hydrous zirconium oxide,” Separation Science and Technology, vol. 36, no. 1, pp. 103–111, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. B. Pan, J. Xu, Z. B. Wu, Z. Li, and X. Liu, “Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles,” Environmental Science & Technology, vol. 47, no. 16, pp. 9347–9354, 2013. View at Google Scholar
  59. N. M. Price, G. I. Harrison, J. G. Hering et al., “Preparation and chemistry of the artificial algal culture medium Aquil,” Biological Oceanography, vol. 6, no. 5-6, pp. 443–461, 1989. View at Google Scholar
  60. M. Thakkar, Z. Wu, L. Wei, and S. Mitra, “Water defluoridation using a nanostructured diatom-ZrO2 composite synthesized from algal Biomass,” Journal of Colloid and Interface Science, vol. 450, pp. 239–245, 2015. View at Publisher · View at Google Scholar · View at Scopus
  61. J. A. Wang, L. F. Chen, M. A. Valenzuela et al., “Surfactant-assisted synthesis of defective zirconia mesophases and Pd/ZrO2: Crystalline structure and catalytic properties,” Applied Surface Science, vol. 254, no. 16, pp. 5061–5072, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. A. K. Singh and U. T. Nakate, “Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia,” The Scientific World Journal, vol. 2014, Article ID 349457, 7 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Szlachta and N. Chubar, “The application of Fe-Mn hydrous oxides based adsorbent for removing selenium species from water,” Chemical Engineering Journal, vol. 217, pp. 159–168, 2013. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Q. Dalagan and E. P. Enriquez, “Interaction of Diatom Silica with Graphene,” Phillippine Science Letters, vol. 6, no. 1, pp. 119–127, 2013. View at Google Scholar
  65. M. Guan, W. Liu, Y. Shao, H. Huang, and H. Zhang, “Preparation, characterization and adsorption properties studies of 3-(methacryloyloxy)propyltrimethoxysilane modified and polymerized sol-gel mesoporous SBA-15 silica molecular sieves,” Microporous and Mesoporous Materials, vol. 123, no. 1-3, pp. 193–201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Möller, J. Kobler, and T. Bein, “Colloidal suspensions of nanometer-sized mesoporous silica,” Advanced Functional Materials, vol. 17, no. 4, pp. 605–612, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. H.-M. Kao, T.-Y. Shen, J.-D. Wu, and L.-P. Lee, “Control of ordered structure and morphology of cubic mesoporous silica SBA-1 via direct synthesis of thiol-functionalization,” Microporous and Mesoporous Materials, vol. 110, no. 2-3, pp. 461–471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Lagergren, “About the theory of so-called adsorption of soluble substances,” Kungliga Svenska Vetenskapsakademiens Handlingar, vol. 24, no. 4, pp. 1–39, 1898. View at Google Scholar
  69. Y. S. Ho and G. McKay, “The kinetics of sorption of divalent metal ions onto sphagnum moss peat,” Water Research, vol. 34, no. 3, pp. 735–742, 2000. View at Publisher · View at Google Scholar · View at Scopus
  70. Y.-S. Ho, “Citation review of Lagergren kinetic rate equation on adsorption reactions,” Scientometrics, vol. 59, no. 1, pp. 171–177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. E. Bulut, M. Özacar, and I. A. Şengil, “Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design,” Microporous and Mesoporous Materials, vol. 115, no. 3, pp. 234–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” Journal of the American Chemical Society, vol. 40, no. 9, pp. 1361–1403, 1918. View at Google Scholar
  73. H. Freundlich, “Over the adsorption in solution,” Journal of Physical Chemistry, vol. 57, Article ID 385471, pp. 1100–1107, 1906. View at Google Scholar
  74. K. R. Hall, L. C. Eagleton, A. Acrivos, and T. Vermeulen, “Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions,” Industrial & Engineering Chemistry Fundamentals, vol. 5, no. 2, pp. 212–223, 1966. View at Google Scholar
  75. P. K. Malik, “Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics,” Journal of Hazardous Materials, vol. 113, no. 1–3, pp. 81–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. V. Poots, G. J. McKay, and Healy., “Removal of basic dye from effluent using wood as an adsorbent,” Journal (Water Pollution Control Federation), pp. 926–935, 1978. View at Google Scholar
  77. D. Peak and D. Sparks, “Mechanisms of selenate adsorption on iron oxides and hydroxides,” Environmental Science & Technology, vol. 36, no. 7, pp. 1460–1466, 2002. View at Google Scholar
  78. M. Barathi, A. Santhana Krishna Kumar, and N. Rajesh, “A novel ultrasonication method in the preparation of zirconium impregnated cellulose for effective fluoride adsorption,” Ultrasonics Sonochemistry, vol. 21, no. 3, pp. 1090–1099, 2014. View at Publisher · View at Google Scholar · View at Scopus
  79. S. S. Ramamurthy, Y. Chen, M. K. Kalyan, G. N. Rao, J. Chelli, and S. Mitra, “Carbon nanotube-zirconium dioxide hybrid for defluoridation of water,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 4, pp. 3552–3559, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Tuzen and A. Sari, “Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: Equilibrium, thermodynamic and kinetic studies,” Chemical Engineering Journal, vol. 158, no. 2, pp. 200–206, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Fu, J. Wang, Q. Liu, and H. Zeng, “Water-dispersible magnetic nanoparticle-graphene oxide composites for selenium removal,” Carbon, vol. 77, pp. 710–721, 2014. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. T. Chan, W. H. Kuan, T. Y. Chen, and M. K. Wang, “Adsorption mechanism of selenate and selenite on the binary oxide systems,” Water Research, vol. 43, no. 17, pp. 4412–4420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. A. W. Lounsbury, J. S. Yamani, C. P. Johnston, P. Larese-Casanova, and J. B. Zimmerman, “The role of counter ions in nano-hematite synthesis: implications for surface area and selenium adsorption capacity,” Journal of Hazardous Materials, vol. 310, pp. 117–124, 2016. View at Publisher · View at Google Scholar · View at Scopus