Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2017, Article ID 2820619, 9 pages
https://doi.org/10.1155/2017/2820619
Review Article

DNA Nanobiosensors: An Outlook on Signal Readout Strategies

Confer Health, Inc., Charlestown, MA, USA

Correspondence should be addressed to Arun Richard Chandrasekaran; ude.uyn@drahcirnura

Received 18 January 2017; Revised 1 May 2017; Accepted 9 May 2017; Published 30 May 2017

Academic Editor: Jorge Pérez-Juste

Copyright © 2017 Arun Richard Chandrasekaran. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. T. Ahuja and D. Kumar, “Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications,” Sens. Actuators B, vol. 136, pp. 275–286, 2009. View at Google Scholar
  2. J. Lei and H. Ju, “Signal amplification using functional nanomaterials for biosensing,” Chem. Soc. Rev, vol. 41, pp. 2122–2134, 2012. View at Google Scholar
  3. Y. Zhang, Y. Guo, Y. Xianyu, W. Chen, Y. Zhao, and X. Jiang, “Nanomaterials for ultrasensitive protein detection,” Adv. Mater, vol. 25, pp. 3802–3819, 2013. View at Google Scholar
  4. W. Wang, T. Lin, S. Zhang, T. Bai, Y. Mi, and B. Wei, “Self-assembly of fully addressable DNA nanostructures from double crossover tiles,” Nucleic Acids Research, vol. 44, no. 16, pp. 7989–7996, 2016. View at Publisher · View at Google Scholar
  5. J. Zheng, J. J. Birktoft, Y. Chen et al., “From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal,” Nature, vol. 461, pp. 74–77, 2009. View at Google Scholar
  6. D. Bhatia, S. Arumugam, M. Nasilowski et al., “Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways,” Nat. Nanotech, vol. 11, pp. 1112–1119, 2016. View at Google Scholar
  7. F. Zhang, S. Jiang, S. Wu et al., “Complex wireframe DNA origami nanostructures with multi-arm junction vertices,” Nat. Nanotech, vol. 10, pp. 779–784, 2015. View at Google Scholar
  8. A. Czogalla, H. G. Franquelim, and P. Schwille, “DNA Nanostructures on Membranes as Tools for Synthetic Biology,” Biophysical Journal, vol. 110, pp. 1698–1707, 2016. View at Google Scholar
  9. R. Chhabra, J. Sharma, Y. Liu, S. Rinker, and H. Yan, “DNA self-assembly for nanomedicine,” Adv. Drug Deliv. Rev, vol. 62, pp. 617–625, 2010. View at Google Scholar
  10. C. M. Niemeyer, “Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science,” Angewandte Chemie International Edition, vol. 40, no. 22, pp. 4128–4158, 2001. View at Publisher · View at Google Scholar
  11. J. Chao, D. Zhu, Y. Zhang, L. Wang, and C. Fan, “DNA nanotechnology-enabled biosensors,” Biosens Bioelectron, vol. 76, pp. 68–79, 2016. View at Google Scholar
  12. H. M. Meng, H. Liu, H. Kuai, R. Peng, L. Moa, and X. B. Zhang, “Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy,” Chem. Soc. Rev, vol. 45, no. 9, pp. 2583–2602, 2016. View at Publisher · View at Google Scholar
  13. A. R. Chandrasekaran, H. Wady, and H. K. K. Subramanian, “Nucleic acid nanostructures for chemical and biological sensing,” Small, vol. 12, pp. 2689–2700, 2016. View at Google Scholar
  14. H. Pei, X. Zuo, D. Pan, J. Shi, Q. Huang, and C. Fan, “Scaffolded biosensors with designed DNA nanostructures,” NPG Asia Materials, vol. 5, p. e51, 2013. View at Google Scholar
  15. J. Bath and A. J. Turberfield, “DNA nanomachines,” Nat. Nanotech, vol. 2, pp. 275–284, 2007. View at Google Scholar
  16. F. C. Simmel and W. U. Dittmer, “DNA nanodevices,” Small, vol. 1, pp. 284–299, 2005. View at Google Scholar
  17. A. Idili, A. Vallee-Belisle, and F. Ricci, “Programmable pH-triggered DNA nanoswitches,” J. Am. Chem. Soc, vol. 136, pp. 5836–5839, 2014. View at Google Scholar
  18. S. Modi, M. G. Swetha, D. Goswami, G. D. Gupta, S. Mayor, and Y. Krishnan, “A DNA nanomachine that maps spatial and temporal pH changes inside living cells,” Nature Nanotech, vol. 4, pp. 325–330, 2009. View at Google Scholar
  19. S. Chakraborty, S. Sharma, P. K. Maiti, and Y. Krishnan, “The poly dA helix: a new structural motif for high performance DNA-based molecular switches,” Nucl. Acids Res, vol. 37, pp. 2810–2817, 2009. View at Google Scholar
  20. S. Burge, G. N. Parkinson, P. Hazel, A. K. Todd, and S. Neidle, “Quadruplex DNA: sequence, topology and structure,” Nucl. Acids Res, vol. 34, pp. 5402–5415, 2006. View at Google Scholar
  21. S. Song, L. Wang, J. Li, C. Fan, and J. Zhao, “Aptamer-based biosensors,” Trends Anal. Chem, vol. 27, pp. 108–117, 2008. View at Google Scholar
  22. S. Tombelli, M. Minunni, and M. Mascini, “Analytical applications of aptamers,” Biosens. Bioelectron, vol. 20, pp. 2424–2434, 2005. View at Google Scholar
  23. B. Yurke, A. J. Turberfield, A. P. Mills Jr, F. C. Simmel, and J. L. Neumann, “A DNA-fuelled molecular machine made of DNA,” Nature, vol. 406, pp. 605–608, 2000. View at Google Scholar
  24. S. Ranallo, M. Rossetti, K. W. Plaxco, A. Vallée-Bélisle, and F. Ricci, “A modular, DNA-based beacon for single-step fluorescence detection of antibodies and other proteins,” Angew. Chem. Int, vol. 54, pp. 13214–13218, 2015. View at Google Scholar
  25. J. Liu and Y. Lu, “A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles,” J. Am. Chem. Soc, vol. 125, pp. 6642-6643, 2003. View at Google Scholar
  26. H. Pei, N. Lu, Y. Wen et al., “A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing,” Adv Mater, vol. 22, pp. 4754–4758, 2010. View at Google Scholar
  27. A. R. Chandrasekaran, J. Zavala, and K. Halvorsen, “Programmable DNA Nanoswitches for Detection of Nucleic Acid Sequences,” ACS Sensors, vol. 1, no. 2, pp. 120–123, 2015. View at Publisher · View at Google Scholar
  28. A. Kuzuya, R. Watanabe, Y. Yamanaka, T. Tamaki, M. Kaino, and Y. Ohya, “Nanomechanical DNA origami pH sensors,” Sensors, vol. 14, pp. 19329–19335, 2014. View at Google Scholar
  29. M. Li, J. Zhang, S. Suri, L. J. Sooter, D. Ma, and N. Wu, “Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering,” Anal Chem, vol. 84, pp. 2837–2842, 2012. View at Google Scholar
  30. D. Liu, A. Bruckbauer, C. Abell et al., “A reversible pH-driven DNA nanoswitch array,” J. Am. Chem. Soc, vol. 128, pp. 2067–2071, 2006. View at Google Scholar
  31. X. M. Li, J. Song, T. Cheng, and P. Y. Fu, “A duplex-triplex nucleic acid nanomachine that probes pH changes inside living cells during apoptosis,” Anal. Bioanal. Chem, vol. 405, pp. 5993–5999, 2013. View at Google Scholar
  32. X. Y. Li, J. Huang, H. X. Jiang, Y. C. Du, G. M. Hana, and D. M. Kong, “Molecular logic gates based on DNA tweezers responsive to multiplex restriction endonucleases,” RSC Advances, vol. 6, no. 44, pp. 38315–38320, 2016. View at Publisher · View at Google Scholar · View at Scopus
  33. E. A. Jares-Erijman and T. M. Jovin, “FRET imaging,” Nat. Biotech, vol. 21, pp. 1387–1395, 2003. View at Google Scholar
  34. S. Surana, J. M. Bhat, S. P. Koushika, and Y. Krishnan, “An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism,” Nat. Commun, vol. 2, p. 340, 2011. View at Google Scholar
  35. S. Modi, C. Nizak, S. Surana, S. Halder, and Y. Krishnan, “Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell,” Nat. Nanotech, vol. 8, pp. 459–467, 2013. View at Google Scholar
  36. H. Pei, L. Liang, G. Yao, J. Li, Q. Huang, and C. Fan, “Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors,” Angew. Chem. Int, vol. 51, pp. 9020–9024, 2012. View at Google Scholar
  37. J. Y. Kim and J. S. Lee, “Synthesis and thermally reversible assembly of DNAgold nanoparticle cluster conjugates,” Nano Lett, vol. 9, pp. 4564–4569, 2009. View at Google Scholar
  38. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science, vol. 277, pp. 1078–1081, 1997. View at Google Scholar
  39. P. Lie, J. Liu, Z. Fang, B. Dun, and L. Zeng, “A lateral flow biosensor for detection of nucleic acids with high sensitivity and selectivity,” Chemical Communications, vol. 48, no. 2, pp. 236–238, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Zhou, M. Lin, P. Song, X. Chen et al., “Multivalent capture and detection of cancer cells with DNA nanostructured biosensors and multibranched hybridization chain reaction amplification,” Anal. Chem, vol. 86, pp. 7843–7848, 2014. View at Google Scholar
  41. H. Pei, Y. Wan, J. Li et al., “Regenerable electrochemical immunological sensing at DNA nanostructure-decorated gold surfaces,” Chem. Commun, vol. 47, pp. 6254–6256, 2011. View at Google Scholar
  42. X. Chen, C. Y. Hong, Y. H. Lin, J. H. Chen, G. N. Chen, and H. H. Yang, “Enzyme-free and label-free ultrasensitive electrochemical detection of human immunodeficiency virus DNA in biological samples based on long-range self-assembled DNA nanostructures,” Anal. Chem, vol. 84, pp. 8277–8283, 2012. View at Google Scholar
  43. A. A. Lubin and K. W. Plaxco, “Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures,” Acc. Chem. Res, vol. 43, pp. 496–505, 2010. View at Google Scholar
  44. H. Li, N. Arroyo-Currás, D. Kang, F. Ricci, and K. W. Plaxco, “Dual-Reporter drift correction to enhance the performance of electrochemical aptamer-based sensors in whole blood,” Journal of the American Chemical Society, vol. 138, no. 49, pp. 15809–15812, 2016. View at Publisher · View at Google Scholar
  45. B. S. Ferguson, D. A. Hoggarth, D. Maliniak et al., “Real-time, aptamer-based tracking of circulating therapeutic agents in living animals,” Science Translational Medicine, vol. 5, Article ID 213ra165, 2013. View at Google Scholar
  46. A. J. Bonham, N. G. Paden, F. Ricci, and K. W. Plaxco, “Detection of IP-10 protein marker in undiluted blood serum via an electrochemical E-DNA scaffold sensor,” Analyst, vol. 138, pp. 5580–5583, 2013. View at Google Scholar
  47. A. Vallée-Bélisle, F. Ricci, T. Uzawa, F. Xia, and K. W. Plaxco, “Bioelectrochemical switches for the quantitative detection of antibodies directly in whole blood,” J. Am. Chem. Soc, vol. 134, pp. 15197–15200, 2012. View at Google Scholar
  48. M. A. Koussa, K. Halvorsen, A. Ward, and W. P. Wong, “DNA nanoswitches: a quantitative platform for gel-based biomolecular interaction analysis,” Nat. Methods, vol. 12, pp. 123–126, 2015. View at Google Scholar
  49. P. W. K. Rothemund, “Folding DNA to create nanoscale shapes and patterns,” Nature, vol. 440, pp. 297–302, 2006. View at Google Scholar
  50. Y. Ke, S. Lindsay, Y. Chang, Y. Liu, and H. Yan, “Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays,” Science, vol. 319, pp. 180–183, 2008. View at Google Scholar
  51. H. K. K. Subramanian, B. Chakraborty, R. Sha, and N. C. Seeman, “The label-free unambiguous detection and symbolic display of single nucleotide polymorphisms on DNA origami,” Nano Lett, vol. 11, pp. 910–913, 2011. View at Google Scholar
  52. K. Kneipp, Y. Wang, H. Kneipp et al., “Single molecule detection using surface-enhanced raman scattering (SERS),” Phys. Rev. Lett, vol. 78, pp. 1667–1670, 1997. View at Google Scholar
  53. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B, vol. 107, no. particles, pp. 668–677, 2003. View at Google Scholar
  54. B. Küstner, M. Gellner, M. Schütz et al., “SERS labels for red laser excitation: silica-encapsulated SAMs on tunable gold/silver nanoshells,” Angew. Chem. Int, vol. 48, pp. 1950–1953, 2009. View at Google Scholar
  55. W. E. Doering and S. Nie, “Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced raman scattering,” Anal. Chem, vol. 75, pp. 6171–6176, 2003. View at Google Scholar
  56. Y. C. Cao, R. Jin, C. S. Thaxton, and C. A. Mirkin, “A two-color-change, nanoparticle-based method for DNA detection,” Talanta, vol. 67, pp. 449–455, 2005. View at Google Scholar
  57. J. W. Keum, M. Kim, J. M. Park, C. Yoo, N. Huh, and S. C. Park, “DNA-directed self-assembly of three-dimensional plasmonic nanostructures for detection by surface-enhanced Raman scattering (SERS),” Sensing and Bio-Sensing Research, vol. 1, pp. 21–25, 2014. View at Google Scholar
  58. V. V. Thacker, L. O. Herrmann, D. O. Sigle et al., “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun, vol. 5, article 3448, 2014. View at Google Scholar
  59. O. I. Wilner and I. Willner, “Functionalized DNA nanostructures,” Chem. Rev, vol. 112, pp. 2528–2556, 2012. View at Google Scholar
  60. A. R. Chandrasekaran, “Programmable DNA scaffolds for spatially-ordered protein assembly,” Nanoscale, vol. 8, pp. 4436–4446, 2016. View at Google Scholar
  61. D. A. Rusling, A. R. Chandrasekaran, Y. P. Ohayon et al., “Functionalizing designer DNA crystals with a triple-helical veneer,” Angew. Chem. Int, vol. 53, pp. 3979–3982, 2014. View at Google Scholar
  62. V. Valsangkar, A. R. Chandrasekaran, R. Wang et al., “Click-based functionalization of a 2′-O-propargyl-modified branched DNA nanostructure,” J. Mater. Chem. B, vol. 5, no. 11, pp. 2074–2077, 2017. View at Publisher · View at Google Scholar
  63. C. H. Lu and I. Willner, “Stimuli-responsive DNA-functionalized nano-/microcontainers for switchable and controlled release,” Angew. Chem. Int, vol. 54, pp. 12212–12235, 2015. View at Google Scholar
  64. X. Yang, Y. Tang, S. D. Mason, J. Chen, and F. Li, “Enzyme-powered three-dimensional DNA nanomachine for DNA walking, payload release, and biosensing,” ACS Nano, vol. 10, pp. 2324–2330, 2016. View at Google Scholar
  65. N. Chen, S. Qin, X. Yang, Q. Wang, J. Huang, and K. Wang, ““Sense-and-Treat” DNA nanodevice for synergetic destruction of circulating tumor cells,” ACS Applied Materials & Interfaces, vol. 8, no. 40, pp. 26552–26558, 2016. View at Publisher · View at Google Scholar
  66. D. Li, W. Cheng, Y. Li et al., “Catalytic hairpin assembly actuated DNA nanotweezer for logic gate building and sensitive enzyme-free biosensing of microRNAs,” Analytical Chemistry, vol. 88, no. 15, pp. 7500–7506, 2016. View at Publisher · View at Google Scholar · View at Scopus
  67. D. S. Lee, H. Qian, C. Y. Tay, and D. T. Leong, “Cellular processing and destinies of artificial DNA nanostructures,” Chemical Society Reviews, vol. 45, no. 15, pp. 4199–4225, 2016. View at Publisher · View at Google Scholar · View at Scopus
  68. J. J. Fakhoury, C. K. McLaughlin, T. W. Edwardson, J. W. Conway, and H. F. Sleiman, “Development and characterization of gene silencing DNA cages,” Biomacromolecules, vol. 15, pp. 276–282, 2014. View at Google Scholar
  69. T. Shimo, K. Tachibana, K. Saito et al., “Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro,” Nucl. Acids Res, pp. 8174–8187, 2014. View at Google Scholar
  70. C. Lin, Y. Ke, Z. Li, J. H. Wang, Y. Liu, and H. Yan, “Mirror image DNA nanostructures for chiral supramolecular assemblies,” Nano Lett, vol. 9, pp. 433–436, 2009. View at Google Scholar
  71. J. W. Conway, C. K. McLaughlin, K. J. Castor, and H. Sleiman, “DNA nanostructure serum stability: greater than the sum of its parts,” Chem. Commun, vol. 49, pp. 1172–1174, 2013. View at Google Scholar
  72. V. B. Pinheiro and P. Holliger, “Towards XNA nanotechnology: new materials from synthetic genetic polymers,” Trends Biotechnol, vol. 32, pp. 321–328, 2014. View at Google Scholar
  73. Q. Mei, X. Wei, F. Su et al., “Stability of DNA origami nanoarrays in cell lysate,” Nano Lett, vol. 11, pp. 1477–1482, 2011. View at Google Scholar
  74. J. Hahn, S. F. J. Wickham, W. M. Shih, and S. D. Perrault, “Addressing the instability of DNA nanostructures in tissue culture,” ACS Nano, vol. 8, pp. 8765–8775, 2014. View at Google Scholar
  75. C. Lin, R. Jungmann, A. M. Leifer et al., “Sub-micrometer geometrically encoded fluorescent barcodes self-assembled from DNA,” Nat. Chem, vol. 4, pp. 832–839, 2012. View at Google Scholar
  76. B. J. Beliveau, A. N. Boettiger, M. S. Avendaño et al., “Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes,” Nat. Commun, vol. 6, article 7147, 2015. View at Google Scholar
  77. D. Gareau, A. Desrosiers, and A. Vallée-Bélisle, “Programmable quantitative DNA nanothermometers,” Nano Lett, vol. 16, pp. 3976–3981, 2016. View at Google Scholar
  78. N. A. W. Bell, C. R. Engst, M. Ablay et al., DNA Origami Nanopores. Nano Lett, vol. 12, pp. 512–517, 2012.
  79. A. N. Marchi, I. Saaem, B. N. Vogen, S. Brown, and T. H. LaBean, “Toward larger DNA origami,” Nano Lett, vol. 14, pp. 5740–5747, 2014. View at Google Scholar
  80. A. R. Chandrasekaran, M. Pushpanathan, and K. Halvorsen, Evolution of DNA origami scaffolds. Mat. Lett, vol. 170, pp. 221–224, 2016.
  81. C. Lin, S. D. Perrault, M. Kwak, F. Graf, and W. M. Shih, “Purification of DNA-origami nanostructures by rate-zonal centrifugation,” Nucleic Acids Research, vol. 41, no. 2, p. e40, 2013. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Shaw, E. Benson, and B. Högberg, “Purification of functionalized DNA origami nanostructures,” ACS Nano, vol. 9, pp. 4968–4975, 2015. View at Google Scholar
  83. E. Stahl, T. G. Martin, F. Praetorius, and H. Dietz, “Facile and scalable preparation of pure and dense DNA origami solutions,” Angew. Chem. Int, vol. 53, pp. 12735–12740, 2014. View at Google Scholar
  84. G. Bellot, M. A. McClintock, C. Lin, and W. M. Shih, “Recovery of intact DNA nanostructures after agarose gel-based separation,” Nat. Methods, vol. 8, pp. 192–194, 2011. View at Google Scholar
  85. K. Halvorsen, M. Kizer, X. Wang, A. R. Chandrasekaran, and M. Basanta Sanchez, “Shear dependent LC purification of an engineered DNA nanoswitch and implications for DNA origami,” Anal. Chem, 2017. View at Publisher · View at Google Scholar
  86. A. R. Chandrasekaran, N. Anderson, M. Kizer, K. Halvorsen, and X. Wang, “Beyond the fold: Emerging biological applications of DNA origami,” ChemBioChem, vol. 17, pp. 1081–1089, 2016. View at Google Scholar