Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2017, Article ID 4270794, 8 pages
https://doi.org/10.1155/2017/4270794
Research Article

Surface Plasmon Enhanced Light Trapping in Metal/Silicon Nanobowl Arrays for Thin Film Photovoltaics

Department of Physics and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875, China

Correspondence should be addressed to Kuiqing Peng; nc.ude.unb@gnep_qk

Received 10 March 2017; Revised 4 June 2017; Accepted 20 June 2017; Published 10 September 2017

Academic Editor: Jorge Pérez-Juste

Copyright © 2017 Ruinan Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nature Communications, vol. 3, article no. 692, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nature Communications, vol. 4, article 2950, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Letters, vol. 12, no. 3, pp. 1616–1619, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Y. Wang, R. J. Zhang, S. Y. Wang et al., “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Scientific Reports, vol. 5, article no. 7810, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Letters, vol. 10, no. 6, pp. 1979–1984, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. K. V. Baryshnikova, M. I. Petrov, V. E. Babicheva, and P. A. Belov, “Plasmonic and silicon spherical nanoparticle antireflective coatings,” Scientific Reports, vol. 6, Article ID 22136, 2016. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Lin, F. Xiu, M. Fang et al., “Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting,” ACS Nano, vol. 8, no. 4, pp. 3752–3760, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Yang, P. Gao, C. Zhang, X. Li, and J. Ye, “Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells,” Scientific Reports, vol. 6, Article ID 30503, 2016. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Gao, J. He, S. Zhou et al., “Large-Area Nanosphere Self-Assembly by a Micro-Propulsive Injection Method for High Throughput Periodic Surface Nanotexturing,” Nano Letters, vol. 15, no. 7, pp. 4591–4598, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Yang, X. Li, S. Wu, P. Gao, and J. Ye, “High-efficiency photon capturing in ultrathin silicon solar cells with front nanobowl texture and truncated-nanopyramid reflector,” Optics Letters, vol. 40, no. 6, pp. 1077–1080, 2015. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Gao, H. Wang, Z. Sun, W. Han, J. Li, and J. Ye, “Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications,” Applied Physics Letters, vol. 103, no. 25, Article ID 253105, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Li, H. Yu, S. Wong et al., “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Applied Physics Letters, vol. 95, Article ID 033102, 2009. View at Publisher · View at Google Scholar
  13. J. Li, H. Yu, Y. Li, F. Wang, M. Yang, and S. M. Wong, “Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells,” Applied Physics Letters, vol. 98, no. 2, Article ID 021905, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Yang, A. Shang, Y. Zhan, C. Zhang, and X. Li, “Ultra-broadband performance enhancement of thin-film amorphous silicon solar cells with conformal zig-zag configuration,” Optics Letters, vol. 38, no. 23, pp. 5071–5074, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Materials, vol. 9, no. 3, pp. 205–213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Physical Review B - Condensed Matter and Materials Physics, vol. 85, no. 11, Article ID 115449, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Wen, F. Sun, and Q. Chen, “Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells,” Applied Physics Letters, vol. 104, no. 15, Article ID 151106, 2014. View at Publisher · View at Google Scholar
  18. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Advanced Materials, vol. 21, no. 34, pp. 3504–3509, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Applied Physics Letters, vol. 92, no. 5, Article ID 053110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Applied Physics Letters, vol. 96, no. 3, Article ID 033113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Applied Physics Letters, vol. 89, Article ID 093103, 2006. View at Publisher · View at Google Scholar
  22. J. Park, N. Park, and S. Varlamov, “Optimum surface condition for plasmonic Ag nanoparticles in polycrystalline silicon thin film solar cells,” Applied Physics Letters, vol. 104, no. 3, Article ID 033903, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Spinelli and A. Polman, “Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles,” Optics Express, vol. 20, no. 105, pp. A641–A654, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Letters, vol. 12, no. 8, pp. 4070–4076, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Bhattacharya, N. Chakravarty, S. Pattnaik, W. Dennis Slafer, R. Biswas, and V. L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Applied Physics Letters, vol. 99, no. 13, Article ID 131114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Basch, F. J. Beck, T. Söderström, S. Varlamov, and K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells,” Applied Physics Letters, vol. 100, no. 24, Article ID 243903, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Van Lare, F. Lenzmann, and A. Polman, “Dielectric back scattering patterns for light trapping in thin-film Si solar cells,” Optics Express, vol. 21, no. 18, pp. 20738–20746, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Ouyang, S. Pillai, F. Beck et al., “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Applied Physics Letters, vol. 96, no. 26, Article ID 261109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Yang, Z. Fu, F. Lin, and X. Zhu, “Incident angle dependence of absorption enhancement in plasmonic solar cells,” Optics Express, vol. 19, no. 104, pp. A763–A771, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, “Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells,” Applied Physics Letters, vol. 101, no. 22, Article ID 221110, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. R.-N. Sun, K.-Q. Peng, B. Hu, Y. Hu, F.-Q. Zhang, and S.-T. Lee, “Plasmon enhanced broadband optical absorption in ultrathin silicon nanobowl array for photoactive devices applications,” Applied Physics Letters, vol. 107, no. 1, Article ID 013107, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Li and P. W. Bonn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Applied Physics Letters, vol. 77, no. 16, pp. 2572–2574, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Peng, A. Lu, R. Zhang, and S. T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Advanced Functional Materials, vol. 18, no. 19, pp. 3026–3035, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Peng, X. Wang, X. Wu, and S. Lee, “Fabrication and photovoltaic property of ordered macroporous silicon,” Applied Physics Letters, vol. 95, no. 14, p. 143119, 2009. View at Publisher · View at Google Scholar
  35. E. D. Palik, Handbook of Optical Constants of Solids, Elsevier, London, UK, 1988.
  36. M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Letters, vol. 12, no. 6, pp. 2894–2900, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. X. Li and Y. Zhan, “Enhanced external quantum efficiency in rectangular single nanowire solar cells,” Applied Physics Letters, vol. 102, no. 2, Article ID 021101, 2013. View at Publisher · View at Google Scholar · View at Scopus