Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2017, Article ID 5831959, 10 pages
https://doi.org/10.1155/2017/5831959
Research Article

Antibacterial Efficacy of Gold and Silver Nanoparticles Functionalized with the Ubiquicidin (29–41) Antimicrobial Peptide

1Universidad Autónoma del Estado de México, Facultad de Química, Toluca, MEX, Mexico
2Instituto Nacional de Investigaciones Nucleares, 52750 Ocoyoacac, MEX, Mexico
3Universidad Autónoma del Estado de México, Centro Conjunto de Investigación en Química Sustentable UNAM/UAEM, 50200 Toluca, MEX, Mexico

Correspondence should be addressed to Enrique Morales-Avila; xm.xemeau@vaselarome

Received 21 December 2016; Accepted 6 March 2017; Published 26 March 2017

Academic Editor: Piersandro Pallavicini

Copyright © 2017 Enrique Morales-Avila et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Bardhan, K. Kundu, S. Das, M. Poddar, S. K. Saha, and B. K. Paul, “Formation, thermodynamic properties, microstructures and antimicrobial activity of mixed cationic/non-ionic surfactant microemulsions with isopropyl myristate as oil,” Journal of Colloid and Interface Science, vol. 430, pp. 129–139, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. D. M. Smith, J. K. Simon, and J. R. Baker, “Applications of nanotechnology for immunology,” Nature Reviews Immunology, vol. 13, no. 8, pp. 592–605, 2013. View at Publisher · View at Google Scholar
  3. L. Zhao, A. Seth, N. Wibowo et al., “Nanoparticle vaccines,” Vaccine, vol. 32, no. 3, pp. 327–337, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Azhar Shekoufeh B and F. Lotfipour, “Magnetic nanoparticles for antimicrobial drug delivery,” Pharmazie, vol. 67, no. 10, pp. 817–821, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Rizzello and P. P. Pompa, “Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines,” Chemical Society Reviews, vol. 43, no. 5, pp. 1501–1518, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. L.-E. Shi, Z.-H. Li, W. Zheng, Y.-F. Zhao, Y.-F. Jin, and Z.-X. Tang, “Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review,” Food Additives and Contaminants Part A: Chemistry, Analysis, Control, Exposure and Risk Assessment, vol. 31, no. 2, pp. 173–186, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Kaur, T. Garg, G. Rath, and A. K. Goyal, “Current nanotechnological strategies for effective delivery of bioactive drug molecules in the treatment of tuberculosis,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 31, no. 1, pp. 49–88, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. H. Tran, V. Q. Nguyen, and A. Le, “Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives,” Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 4, no. 3, article 20, 2013. View at Publisher · View at Google Scholar
  9. H. J. Lee, S. G. Lee, E. J. Oh et al., “Antimicrobial polyethyleneimine-silver nanoparticles in a stable colloidal dispersion,” Colloids and Surfaces B: Biointerfaces, vol. 88, no. 1, pp. 505–511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Li, J. Li, C. Wu, Q. Wu, and J. Li, “Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles,” Nanotechnology, vol. 16, no. 9, pp. 1912–1917, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. C. G. Kumar, S. K. Mamidyala, M. N. Reddy, and B. V. S. Reddy, “Silver glyconanoparticles functionalized with sugars of sweet sorghum syrup as an antimicrobial agent,” Process Biochemistry, vol. 47, no. 10, pp. 1488–1495, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Liu, J. Yang, J. Xie et al., “The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes,” Nanoscale, vol. 5, no. 9, pp. 3834–3840, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Kvítek, A. Panáček, J. Soukupová et al., “Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs),” Journal of Physical Chemistry C, vol. 112, no. 15, pp. 5825–5834, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Zhou, Y. Kong, S. Kundu, J. D. Cirillo, and H. Liang, “Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin,” Journal of Nanobiotechnology, vol. 10, article 19, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Demurtas and C. C. Perry, “Facile one-pot synthesis of amoxicillin-coated gold nanoparticles and their antimicrobial activity,” Gold Bulletin, vol. 47, no. 1-2, pp. 103–107, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Gu, P. L. Ho, E. Tong, L. Wang, and B. Xu, “Presenting vancomycin on nanoparticles to enhance antimicrobial activities,” Nano Letters, vol. 3, no. 9, pp. 1261–1263, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Saha, J. Bhattacharya, A. Mukherjee et al., “In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics,” Nanoscale Research Letters, vol. 2, no. 12, pp. 614–622, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Rai, A. Prabhune, and C. C. Perry, “Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings,” Journal of Materials Chemistry, vol. 20, no. 32, pp. 6789–6798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Nirmala Grace and K. Pandian, “Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—a brief study,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 297, no. 1-3, pp. 63–70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Schmidtchen and M. Malmsten, “Peptide interactions with bacterial lipopolysaccharides,” Current Opinion in Colloid and Interface Science, vol. 18, no. 5, pp. 381–392, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. C. A. De Murphy, F. Gemmel, and J. Balter, “Clinical trial of specific imaging of infections,” Nuclear Medicine Communications, vol. 31, no. 8, pp. 726–733, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Beiki, G. Yousefi, B. Fallahi et al., “99mtc-Ubiquicidin [29–41], a promising radiopharmaceutical to differentiate orthopedic implant infections from sterile inflammation,” Iranian Journal of Pharmaceutical Research, vol. 12, no. 2, pp. 347–353, 2013. View at Google Scholar · View at Scopus
  23. G. Ferro-Flores, B. E. Ocampo-García, and L. Melendez-Alafort, “Development of specific radiopharmaceuticals for infection imaging by targeting infectious micro-organisms,” Current Pharmaceutical Design, vol. 18, no. 8, pp. 1098–1106, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. M. S. Akhtar, M. B. Imran, M. A. Nadeem, and A. Shahid, “Antimicrobial peptides as infection imaging agents: better than radiolabeled antibiotics,” International Journal of Peptides, vol. 2012, Article ID 965238, 19 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Saeed, J. Zafar, B. Khan et al., “Utility of 99mTc-labelled antimicrobial peptide ubiquicidin (29–41) in the diagnosis of diabetic foot infection,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 40, no. 5, pp. 737–743, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” Journal of Physical Chemistry B, vol. 110, no. 32, pp. 15700–15707, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Dong, X. Ji, H. Wu, L. Zhao, J. Li, and W. Yang, “Shape control of silver nanoparticles by stepwise citrate reduction,” Journal of Physical Chemistry C, vol. 113, no. 16, pp. 6573–6576, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. L. C. Robles, C. Garcia-Olalla, and A. J. Aller, “Potentiometric titration of gold in ores with potassium iodide,” Fresenius' Journal of Analytical Chemistry, vol. 345, no. 6, pp. 441–444, 1993. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Xu, X. Qiao, X. Qiu, and J. Chen, “Preparation and characterization of nano-silver loaded montmorillonite with strong antibacterial activity and slow release property,” Journal of Materials Science and Technology, vol. 27, no. 8, pp. 685–690, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard M07-A9, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 8th edition, 2012.
  31. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” Journal of Physical Chemistry B, vol. 107, no. 3, pp. 668–677, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review,” Analytica Chimica Acta, vol. 706, no. 1, pp. 8–24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Molero, R. Andreu, D. González, J. J. Calvente, and G. López-Pérez, “An isotropic model for micellar systems: application to sodium dodecyl sulfate solutions,” Langmuir, vol. 17, no. 2, pp. 314–322, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Prieto, V. Nistor, K. Nouneh, M. Oyama, M. Abd-Lefdil, and R. Díaz, “XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth,” Applied Surface Science, vol. 258, no. 22, pp. 8807–8813, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Maiti, S. Thomas, A. Debnath, and S. Kapoor, “Raman and XPS study on the interaction of taurine with silver nanoparticles,” RSC Advances, vol. 6, no. 61, pp. 56406–56411, 2016. View at Publisher · View at Google Scholar · View at Scopus
  36. Y.-H. Chen and C.-S. Yeh, “Laser ablation method: use of surfactants to form the dispersed Ag nanoparticles,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 197, no. 1–3, pp. 133–139, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. S. K. Meena, S. Celiksoy, P. Schäfer, A. Henkel, C. Sönnichsen, and M. Sulpizi, “The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective,” Physical Chemistry Chemical Physics, vol. 18, no. 19, pp. 13246–13254, 2016. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Franci, A. Falanga, S. Galdiero et al., “Silver nanoparticles as potential antibacterial agents,” Molecules, vol. 20, no. 5, pp. 8856–8874, 2015. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Wu, W. Fan, A. Kishen, J. L. Gutmann, and B. Fan, “Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm,” Journal of Endodontics, vol. 40, no. 2, pp. 285–290, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Umamaheswari, R. Baskar, K. Chandru, N. Rajendiran, and S. Chandirasekar, “Antibacterial activity of gold nanoparticles and their toxicity assessment,” BMC Infectious Diseases, vol. 14, supplement 3, p. P64, 2014. View at Publisher · View at Google Scholar
  41. J. C. Gumbart, M. Beeby, G. J. Jensen, and B. Roux, “Escherichia coli peptidoglycan structure and mechanics as predicted by atomic-scale simulations,” PLoS Computational Biology, vol. 10, no. 2, Article ID e1003475, 2014. View at Publisher · View at Google Scholar · View at Scopus