Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2017, Article ID 8174987, 10 pages
https://doi.org/10.1155/2017/8174987
Research Article

Facile Synthesis, Microstructure, and Gas Sensing Properties of NdCoO3 Nanoparticles

1Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360 México City, Mexico
2Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, 44410 Guadalajara, JAL, Mexico
3Facultad de Ciencias, Universidad de Colima, 28045 Colima, COL, Mexico
4Departamento de Química, CUCEI, Universidad de Guadalajara, 44410 Guadalajara, JAL, Mexico
5Departamento de Ingeniería Eléctrica-SEES, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360 México City, Mexico
6Departamento de Ciencias Computacionales e Ingenierías, CUVALLES, Universidad de Guadalajara, 46600 Ameca, JAL, Mexico
7Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360 México City, Mexico

Correspondence should be addressed to Lorenzo Gildo-Ortiz; moc.liamg@odlig.oznerol

Received 15 April 2017; Revised 27 June 2017; Accepted 6 July 2017; Published 3 August 2017

Academic Editor: Oscar Perales-Pérez

Copyright © 2017 Lorenzo Gildo-Ortiz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

NdCoO3 nanoparticles were successfully synthesized by a simple, inexpensive, and reproducible solution method for gas sensing applications. Cobalt nitrate, neodymium nitrate, and ethylenediamine were used as precursors and distilled water as solvent. The solvent was evaporated later by means of noncontinuous microwave radiation at 290 W. The obtained precursor powders were calcined at 200, 500, 600, and 700°C in a standard atmosphere. The oxide crystallized in an orthorhombic crystal system with space group Pnma (62) and cell parameters  Å,  Å, and  Å. The nanoparticles showed a diffusional growth to form a network-like structure and porous adsorption configuration. Pellets prepared from NdCoO3 were tested as gas sensors in atmospheres of carbon monoxide and propane at different temperatures. The oxide nanoparticles were clearly sensitive to changes in gas concentrations (0–300 ppm). The sensitivity increased with increasing concentration of the gases and operating temperatures (25, 100, 200, and 300°C).