Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2018, Article ID 9632041, 10 pages
https://doi.org/10.1155/2018/9632041
Research Article

Structural and Mechanical Properties of Nanostructured C-Ag Thin Films Synthesized by Thermionic Vacuum Arc Method

1Department of Plasma Physics, Faculty of Applied Sciences and Engineering, Ovidius University, Mamaia 124, 900527 Constanţa, Romania
2Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic

Correspondence should be addressed to Aurelia Mandes; or.suidivo-vinu@sednama

Received 25 October 2017; Revised 10 January 2018; Accepted 31 January 2018; Published 27 February 2018

Academic Editor: Domenico Acierno

Copyright © 2018 Rodica Vladoiu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Donnet, “Recent progress on the tribology of doped diamond-like and carbon alloy coatings: A review,” Surface and Coatings Technology, vol. 100-101, no. 1-3, pp. 180–186, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. A. A. Voevodin, S. V. Prasad, and J. S. Zabinski, “Nanocrystalline carbide/amorphous carbon composites,” Journal of Applied Physics, vol. 82, no. 2, pp. 855–858, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. N. K. Manninen, F. Ribeiro, A. Escudeiro, T. Polcar, S. Carvalho, and A. Cavaleiro, “Influence of Ag content on mechanical and tribological behavior of DLC coatings,” Surface and Coatings Technology, vol. 232, pp. 440–446, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Yu, Y. Qin, C. B. Wang, Y. Q. Yang, and X. C. Ma, “Effects of nanocrystalline silver incorporation on sliding tribological properties of Ag-containing diamond-like carbon films in multi-ion beam assisted deposition,” Vacuum, vol. 89, no. 1, pp. 82–85, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. H.-S. Zhang, J. L. Endrino, and A. Anders, “Comparative surface and nano-tribological characteristics of nanocomposite diamond-like carbon thin films doped by silver,” Applied Surface Science, vol. 255, no. 5, pp. 2551–2556, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Wang, X. Yu, and M. Hua, “Microstructure and mechanical properties of Ag-containing diamond-like carbon films in mid-frequency dual-magnetron sputtering,” Applied Surface Science, vol. 256, no. 5, pp. 1431–1435, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Hanus, M. Drabik, P. Hlidek, H. Biederman, G. Radnoczi, and D. Slavinska, “Some remarks on Ag/C:H nanocomposite films,” Vacuum, vol. 83, no. 2, pp. 454–456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Zoubos, L. E. Koutsokeras, D. F. Anagnostopoulos et al., “Broadband optical absorption of amorphous carbon/Ag nanocomposite films and its potential for solar harvesting applications,” Solar Energy Materials & Solar Cells, vol. 117, pp. 350–356, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Baba, R. Hatada, S. Flege et al., “Preparation and antibacterial properties of Ag-containing diamond-like carbon films prepared by a combination of magnetron sputtering and plasma source ion implantation,” Vacuum, vol. 89, no. 1, pp. 179–184, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Jiang, C. Tian, G. Song et al., “A green route to synthesize novel Ag/C antibacterial agent,” Materials Research Bulletin, vol. 47, no. 2, pp. 458–463, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. F. P. Schwarz, I. Hauser-Gerspach, T. Waltimo, and B. Stritzker, “Antibacterial properties of silver containing diamond like carbon coatings produced by ion induced polymer densification,” Surface and Coatings Technology, vol. 205, no. 20, pp. 4850–4854, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. N. R. Srinivasan, P. A. Shankar, and R. Bandyopadhyaya, “Plasma treated activated carbon impregnated with silver nanoparticles for improved antibacterial effect in water disinfection,” Carbon, vol. 57, pp. 1–10, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. J. R. Morones, J. L. Elechiguerra, A. Camacho et al., “The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, no. 10, pp. 2346–2353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. C. P. Lungu, I. Mustata, G. Musa et al., “Unstressed carbon-metal films deposited by thermionic vacuum arc method,” Journal of Optoelectronic and Advanced Materials, vol. 8, no. 1, pp. 74–77, 2006. View at Google Scholar · View at Scopus
  15. V. Ciupina, R. Vladoiu, A. Mandes, G. Musa, and C. P. Lungu, “TEM investigation of the C-Me multilayer nanocomposites deposited by Thermionic Vacuum Arc (TVA) method,” Journal of Optoelectronic and Advanced Materials, vol. 10, no. 11, pp. 2958–2962, 2008. View at Google Scholar · View at Scopus
  16. V. Ciupina, R. Vladoiu, C. P. Lungu et al., “Investigation of the SiC thin films synthetized by Thermionic Vacuum Arc method (TVA),” The European Physical Journal D, vol. 66, no. 4, article no. 99, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Kuncser, M. Valeanu, G. Schinteie et al., “Exchange bias and spin valve systems with Fe-Mn antiferromagnetic pinning layers, obtained by the thermo-ionic vacuum arc method,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 14, pp. e226–e230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Vladoiu, V. Dinca, and G. Musa, “Surface energy evaluation of unhydrogenated DLC thin film deposited by thermionic vacuum arc (TVA) method,” The European Physical Journal D, vol. 54, no. 2, pp. 433–437, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Vladoiu, V. Ciupina, A. Mandes, V. Dinca, M. Prodan, and G. Musa, “Growth and characteristics of tantalum oxide thin films deposited using thermionic vacuum arc technology,” Journal of Applied Physics, vol. 108, no. 9, Article ID 093301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Musa, I. Mustata, M. Blideran et al., “Thermioniv vacuum arc - New technique for high purity carbon thin film deposition,” Acta Physica Slovaca, vol. 55, no. 4, pp. 417–421, 2005. View at Google Scholar · View at Scopus
  21. V. S. Teodorescu and M.-G. Blanchin, “Fast and simple specimen preparation for TEM studies of oxide films deposited on silicon wafers,” Microscopy and Microanalysis, vol. 15, no. 1, pp. 15–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. http://www.soft-imaging.net.
  23. J. I. Langford, “The accuracy of cell dimensions determined by Cohen's method of least squares and the systematic indexing of powder data,” Journal of Applied Crystallography, vol. 6, no. 3, pp. 190–196, 1973. View at Publisher · View at Google Scholar
  24. S. Hovmöller, “CRISP: crystallographic image processing on a personal computer,” Ultramicroscopy, vol. 41, no. 1-3, pp. 121–135, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. X. D. Zou, Y. Sukharev, and S. Hovmöller, “Quantitative electron diffraction - new features in the program system ELD,” Ultramicroscopy, vol. 52, no. 3-4, pp. 436–444, 1993. View at Publisher · View at Google Scholar · View at Scopus
  26. W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology,” Journal of Materials Research, vol. 19, no. 1, pp. 3–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. http://scidavis.sourceforge.net/.
  28. R. W. G. Wyckoff, Crystal Structures (WWW-MINCRYST, SILICON-4221), vol. 1, pp. 26-27, 1963.
  29. R. W. G. Wyckoff, Crystal structures (WWW-MINCRYST, SILVER-4219), vol. 1, pp. 7–10, 1963.
  30. J. Li, Y. Lin, and B. Zhao, “Spontaneous agglomeration of silver nanoparticles deposited on carbon film surface,” Journal of Nanoparticle Research, vol. 4, no. 4, pp. 345–349, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Vladoiu, V. Ciupina, C. Surdu-Bob et al., “Properties of the carbon thin films deposited by thermionic vacuum arc,” Journal of Optoelectronic and Advanced Materials, vol. 9, no. 4, pp. 862–866, 2007. View at Google Scholar · View at Scopus