Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2012, Article ID 123610, 7 pages
http://dx.doi.org/10.1155/2012/123610
Research Article

Periconceptional Undernutrition in Sheep Affects Adult Phenotype Only in Males

1Liggins Institute, University of Auckland, Auckland 1023, New Zealand
2National Research Centre for Growth and Development, Auckland 1023, New Zealand
3Waikato Clinical School, University of Auckland, Hamilton 3240, New Zealand
4Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland 1023, New Zealand

Received 31 May 2012; Accepted 27 August 2012

Academic Editor: Patricia Helen C. Rondó

Copyright © 2012 Anne L. Jaquiery et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. H. Oliver, P. Hawkins, B. H. Breier, P. L. van Zijl, S. A. Sargison, and J. E. Harding, “Maternal undernutrition during the periconceptual period increases plasma taurine levels and insulin response to glucose but not arginine in the late gestation fetal sheep,” Endocrinology, vol. 142, no. 10, pp. 4576–4579, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. F. H. Bloomfield, M. H. Oliver, P. Hawkins et al., “Periconceptional undernutrition in sheep accelerates maturation of the fetal hypothalamic-pituitary-adrenal axis in late gestation,” Endocrinology, vol. 145, no. 9, pp. 4278–4285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. E. Harding, “Periconceptual nutrition determines the fetal growth response to acute maternal undernutrition in fetal sheep of late gestation,” Prenatal and Neonatal Medicine, vol. 2, no. 4, pp. 310–319, 1997. View at Google Scholar · View at Scopus
  4. A. L. Jaquiery, M. H. Oliver, F. H. Bloomfield, and J. E. Harding, “Periconceptional events perturb postnatal growth regulation in sheep,” Pediatric Research, vol. 70, no. 3, pp. 261–266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Oliver, “Periconceptional undernutrition suppresses cortisol response to arginine vasopressin and corticotrophin releasing hormone challenge in adult sheep offspring,” Journal of Developmental Origins of Health and Disease, vol. 3, no. 1, pp. 52–58, 2012. View at Publisher · View at Google Scholar
  6. N. Debus, P. Chavatte-Palmer, G. Viudes, S. Camous, A. Roséfort, and P. Hassoun, “Maternal periconceptional undernutrition in Merinos d'Arles sheep: 1. Effects on pregnancy and reproduction results of dams and offspring growth performances,” Theriogenology, vol. 77, no. 7, pp. 1453–1465, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. S. E. Todd, M. H. Oliver, A. L. Jaquiery, F. H. Bloomfield, and J. E. Harding, “Periconceptional undernutrition of ewes impairs glucose tolerance in their adult offspring,” Pediatric Research, vol. 65, no. 4, pp. 409–413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Romero-Corral, V. K. Somers, J. Sierra-Johnson et al., “Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality,” European Heart Journal, vol. 31, no. 6, pp. 737–746, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Desai, D. Gayle, J. Babu, and M. G. Ross, “Programmed obesity in intrauterine growth-restricted newborns: modulation by newborn nutrition,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 288, no. 1, pp. R91–R96, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Singhal, “Does early growth affect long-term risk factors for cardiovascular disease?” Nestle Nutrition Workshop Series, vol. 65, pp. 55–69, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. C. K. Wells, P. C. Hallal, A. Wright, A. Singhal, and C. G. Victora, “Fetal, infant and childhood growth: relationships with body composition in Brazilian boys aged 9 years,” International Journal of Obesity, vol. 29, no. 10, pp. 1192–1198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. H. Oliver, P. Hawkins, and J. E. Harding, “Periconceptional undernutrition alters growth trajectory and metabolic and endocrine responses to fasting in late-gestation fetal sheep,” Pediatric Research, vol. 57, no. 4, pp. 591–598, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. C. W. H. Rumball, F. H. Bloomfield, and J. E. Harding, “Cardiovascular adaptations to pregnancy in sheep and effects of periconceptional undernutrition,” Placenta, vol. 29, no. 1, pp. 89–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. L. Patel, J. L. Engstrom, P. P. Meier, and R. E. Kimura, “Accuracy of methods for calculating postnatal growth velocity for extremely low birth weight infants,” Pediatrics, vol. 116, no. 6, pp. 1466–1473, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. N. Hancock, M. H. Oliver, C. Mclean, A. L. Jaquiery, and F. H. Bloomfield, “Size at birth and adult fat mass in twin sheep are determined in early gestation,” Journal of Physiology, vol. 590, no. 5, pp. 1273–1285, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. M. H. Oliver, A. L. Jaquiery, F. H. Bloomfield, and J. E. Harding, “The effects of maternal nutrition around the time of conception on the health of the offspring,” Society of Reproduction and Fertility, Supplement, vol. 64, pp. 397–410, 2007. View at Google Scholar · View at Scopus
  17. I. C. McMillen, S. M. MacLaughlin, B. S. Muhlhausler, S. Gentili, J. L. Duffield, and J. L. Morrison, “Developmental origins of adult health and disease: the role of periconceptional and foetal nutrition,” Basic and Clinical Pharmacology and Toxicology, vol. 102, no. 2, pp. 82–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. C. W. H. Rumball, F. H. Bloomfield, M. H. Oliver, and J. E. Harding, “Different periods of periconceptional undernutrition have different effects on growth, metabolic and endocrine status in fetal sheep,” Pediatric Research, vol. 66, no. 6, pp. 605–613, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. E. Harding, “The nutritional basis of the fetal origins of adult disease,” International Journal of Epidemiology, vol. 30, no. 1, pp. 15–23, 2001. View at Google Scholar · View at Scopus
  20. B. W. Gallaher, B. H. Breier, J. E. Harding, and P. D. Gluckman, “Periconceptual undernutrition resets plasma IGFBP levels and alters the response of IGFBP-1, IGFBP-3 and IGF-1 to subsequent maternal undernutrition in fetal sheep,” Cytokine and Growth Factor Reviews, vol. 6, no. 2–4, pp. 189–195, 1995. View at Google Scholar · View at Scopus
  21. A. L. Jaquiery, M. H. Oliver, C. W. H. Rumball, F. H. Bloomfield, and J. E. Harding, “Undernutrition before mating in ewes impairs the development of insulin resistance during pregnancy,” Obstetrics and Gynecology, vol. 114, no. 4, pp. 869–876, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Zhu, Z. Wang, W. Shen, S. B. Heymsfield, and S. Heshka, “Percentage body fat ranges associated with metabolic syndrome risk: results based on the third national health and nutrition examination survey (1988–1994),” American Journal of Clinical Nutrition, vol. 78, no. 2, pp. 228–235, 2003. View at Google Scholar · View at Scopus
  23. O. A. Kensara, S. A. Wootton, D. I. Phillips, M. Patel, A. A. Jackson, and M. Elia, “Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen,” American Journal of Clinical Nutrition, vol. 82, no. 5, pp. 980–987, 2005. View at Google Scholar · View at Scopus
  24. H. S. Sachdev, C. H. D. Fall, C. Osmond et al., “Anthropometric indicators of body composition in young adults: relation to size at birth and serial measurements of body mass index in childhood in the New Delhi birth cohort,” American Journal of Clinical Nutrition, vol. 82, no. 2, pp. 456–466, 2005. View at Google Scholar · View at Scopus
  25. M. Ceelen, M. M. van Weissenbruch, J. C. Roos, J. P. W. Vermeiden, F. E. van Leeuwen, and H. A. Delemarre-van de Waal, “Body composition in children and adolescents born after in vitro fertilization or spontaneous conception,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 9, pp. 3417–3423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. H. L. Miles, P. L. Hofman, J. Peek et al., “In vitro fertilization improves childhood growth and metabolism,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 9, pp. 3441–3445, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Stevens, G. Begum, A. Cook et al., “Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition,” Endocrinology, vol. 151, no. 8, pp. 3652–3664, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Singhal and A. Lucas, “Early origins of cardiovascular disease: is there a unifying hypothesis?” The Lancet, vol. 363, no. 9421, pp. 1642–1645, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. N. A. Smith, F. M. McAuliffe, K. Quinn, P. Lonergan, and A. C. O. Evans, “The negative effects of a short period of maternal undernutrition at conception on the glucose-insulin system of offspring in sheep,” Animal Reproduction Science, vol. 121, no. 1-2, pp. 94–100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. K. R. Poore and A. L. Fowden, “The effect of birth weight on hypothalamo-pituitary-adrenal axis function in juvenile and adult pigs,” Journal of Physiology, vol. 547, no. 1, pp. 107–116, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Stewart, M. J. Meaney, D. Aitken, L. Jensen, and N. Kalant, “The effects of acute and life-long food restriction on basal and stress-induced serum corticosterone levels in young and aged rats,” Endocrinology, vol. 123, no. 4, pp. 1934–1941, 1988. View at Google Scholar · View at Scopus
  32. D. M. Sloboda, A. S. Beedle, C. L. Cupido, P. D. Gluckman, and M. H. Vickers, “Impaired perinatal growth and longevity: a life history perspective,” Current Gerontology and Geriatrics Research, vol. 2009, Article ID 608740, 6 pages, 2009. View at Publisher · View at Google Scholar
  33. S. M. Rhind, “Effects of maternal nutrition on fetal and neonatal reproductive development and function,” Animal Reproduction Science, vol. 82-83, pp. 169–181, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. S. M. Rhind, M. T. Rae, and A. N. Brooks, “Effects of nutrition and environmental factors on the fetal programming of the reproductive axis,” Reproduction, vol. 122, no. 2, pp. 205–214, 2001. View at Google Scholar · View at Scopus
  35. M. T. Rae, C. E. Kyle, D. W. Miller, A. J. Hammond, A. N. Brooks, and S. M. Rhind, “The effects of undernutrition, in utero, on reproductive function in adult male and female sheep,” Animal Reproduction Science, vol. 72, no. 1-2, pp. 63–71, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. D. M. Sloboda, G. J. Howie, A. Pleasants, P. D. Gluckman, and M. H. Vickers, “Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat,” PLoS ONE, vol. 4, no. 8, Article ID e6744, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Ibáñez, N. Potau, G. Enriquez, M. V. Marcos, and F. de Zegher, “Hypergonadotrophinaemia with reduced uterine and ovarian size in women born small-for-gestational-age,” Human Reproduction, vol. 18, no. 8, pp. 1565–1569, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Sakamoto, T. Yajima, M. Nagata, T. Okumura, K. Suzuki, and Y. Ogawa, “Relationship between testicular size by ultrasonography and testicular function: measurement of testicular length, width, and depth in patients with infertility,” International Journal of Urology, vol. 15, no. 6, pp. 529–533, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Takihara, M. J. Cosentino, J. Sakatoku, and A. T. K. Cockett, “Significance of testicular size measurement in andrology: II. Correlation of testicular size with testicular function,” Journal of Urology, vol. 137, no. 3, pp. 416–419, 1987. View at Google Scholar · View at Scopus
  40. A. Bielli, R. Pérez, G. Pedrana et al., “Low maternal nutrition during pregnancy reduces the number of Sertoli cells in the newborn lamb,” Reproduction, Fertility and Development, vol. 14, no. 5-6, pp. 333–337, 2002. View at Google Scholar · View at Scopus
  41. T. A. Yarney and L. M. Sanford, “Pubertal development of ram lambs: physical and endocrinological traits in combination as indices of postpubertal reproductive function,” Theriogenology, vol. 40, no. 4, pp. 735–744, 1993. View at Google Scholar · View at Scopus
  42. M. T. Rae, S. M. Rhind, P. A. Fowler, D. W. Miller, C. E. Kyle, and A. N. Brooks, “Effect of maternal undernutrition on fetal testicular steroidogenesis during the CNS androgen-responsive period in male sheep fetuses,” Reproduction, vol. 124, no. 1, pp. 33–39, 2002. View at Google Scholar · View at Scopus