Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2012, Article ID 148729, 6 pages
http://dx.doi.org/10.1155/2012/148729
Research Article

Acute Exercise Increases Adiponectin Levels in Abdominally Obese Men

1Healthy Active Living and Obesity Research, Children’s Hospital of Eastern ON Research Institute, 401 Smyth Road, Ottawa, ON, Canada K1H 8L1
2School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada K1N 6N5
3Department of Anatomy & Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1
4School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada K7L 3N6
5Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725, Chemin Sainte-Foy, Québec, QC, Canada G1V 4G5
6Division of Kinesiology, Department of Social and Preventive Medicine, Laval University, Québec, QC, G1V0 A6, Canada
7Division of Endocrinology and Metabolism, Department of Medicine, Queen’s University, Kingston, ON, Canada K7L 3N6

Received 11 January 2012; Accepted 2 April 2012

Academic Editor: Maria Luz Fernandez

Copyright © 2012 Travis J. Saunders et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Jia and E. I. Lubetkin, “Trends in quality-adjusted life-years lost contributed by smoking and obesity,” American Journal of Preventive Medicine, vol. 38, no. 2, pp. 138–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. T. J. Saunders, L. E. Davidson, P. M. Janiszewski, J. P. Després, R. Hudson, and R. Ross, “Associations of the limb fat to trunk fat ratio with markers of cardiometabolic risk in elderly men and women,” Journals of Gerontology A, vol. 64, no. 10, pp. 1066–1070, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Gavrila, J. L. Chan, N. Yiannakouris et al., “Serum adiponectin levels are inversely associated with overall and central fat distribution but are not directly regulated by acute fasting or leptin administration in humans: cross-sectional and interventional studies,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 10, pp. 4823–4831, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. P. Després, “Is visceral obesity the cause of the metabolic syndrome?” Annals of Medicine, vol. 38, no. 1, pp. 52–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Jürimäe, P. Hofmann, T. Jürimäe et al., “Plasma adiponectin response to sculling exercise at individual anaerobic threshold in college level male rowers,” International Journal of Sports Medicine, vol. 27, no. 4, pp. 272–277, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Bouassida, K. Chamari, M. Zaouali, Y. Feki, A. Zbidi, and Z. Tabka, “Review on leptin and adiponectin responses and adaptations to acute and chronic exercise,” British Journal of Sports Medicine, vol. 44, no. 9, pp. 620–630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Jürimäe, P. Purge, and T. Jürimäe, “Adiponectin is altered after maximal exercise in highly trained male rowers,” European Journal of Applied Physiology, vol. 93, no. 4, pp. 502–505, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. K. A. Simpson and M. A. F. Singh, “Effects of exercise on adiponectin: a systematic review,” Obesity, vol. 16, no. 2, pp. 241–256, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Z. Jamurtas, V. Theocharis, G. Koukoulis et al., “The effects of acute exercise on serum adiponectin and resistin levels and their relation to insulin sensitivity in overweight males,” European Journal of Applied Physiology, vol. 97, no. 1, pp. 122–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Numao, Y. Katayama, Y. Hayashi, T. Matsuo, and K. Tanaka, “Influence of acute aerobic exercise on adiponectin oligomer concentrations in middle-aged abdominally obese men,” Metabolism, vol. 60, no. 2, pp. 186–194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. D. Kriketos, S. K. Gan, A. M. Poynten, S. M. Furler, D. J. Chisholm, and L. V. Campbell, “Exercise increases adiponectin levels and insulin sensitivity in humans,” Diabetes Care, vol. 27, no. 2, pp. 629–630, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Riera-Guardia and D. Rothenbacher, “The effect of thiazolidinediones on adiponectin serum level: a meta-analysis,” Diabetes, Obesity and Metabolism, vol. 10, no. 5, pp. 367–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. D. B. Dill and D. L. Costill, “Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration,” Journal of Applied Physiology, vol. 37, no. 2, pp. 247–248, 1974. View at Google Scholar · View at Scopus
  14. P. D. Thompson, S. F. Crouse, B. Goodpaster, D. Kelley, N. Moyna, and L. Pescatello, “The acute versus the chronic response to exercise,” Medicine and Science in Sports and Exercise, vol. 33, no. 6, pp. S438–S445, 2001. View at Google Scholar · View at Scopus
  15. G. E. Duncan, M. G. Perri, D. W. Theriaque, A. D. Hutson, R. H. Eckel, and P. W. Stacpoole, “Exercise training, without weight loss, increases insulin sensitivity and postheparin plasma lipase activity in previously sedentary adults,” Diabetes Care, vol. 26, no. 3, pp. 557–562, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Waki, T. Yamauchi, J. Kamon et al., “Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin,” Journal of Biological Chemistry, vol. 278, no. 41, pp. 40352–40363, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Lara-Castro, E. C. Doud, P. C. Tapia et al., “Adiponectin multimers and metabolic syndrome traits: relative adiponectin resistance in African Americans,” Obesity, vol. 16, no. 12, pp. 2616–2623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Retnakaran, A. J. G. Hanley, P. W. Connelly, G. Maguire, M. Sermer, and B. Zinman, “Low serum levels of high-molecular weight adiponectin in Indo-Asian women during pregnancy: evidence of ethnic variation in adiponectin isoform distribution,” Diabetes Care, vol. 29, no. 6, pp. 1377–1379, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. R. H. Amin, S. T. Mathews, H. S. Camp, L. Ding, and T. Leff, “Selective activation of PPARγ in skeletal muscle induces endogenous production of adiponectin and protects mice from diet-induced insulin resistance,” American Journal of Physiology, vol. 298, no. 1, pp. E28–E37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Liu, S. Chewchuk, C. Lavigne et al., “Functional significance of skeletal muscle adiponectin production, changes in animal models of obesity and diabetes, and regulation by rosiglitazone treatment,” American Journal of Physiology, vol. 297, no. 3, pp. E657–E664, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. P. Krause, Y. Liu, V. Vu et al., “Adiponectin is expressed by skeletal muscle fibers and influences muscle phenotype and function,” American Journal of Physiology, vol. 295, no. 1, pp. C203–C212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Akimoto, S. C. Pohnert, P. Li et al., “Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway,” Journal of Biological Chemistry, vol. 280, no. 20, pp. 19587–19593, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Pilegaard, B. Saltin, and D. P. Neufer, “Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle,” Journal of Physiology, vol. 546, no. 3, pp. 851–858, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Imbeault, I. Dépault, and F. Haman, “Cold exposure increases adiponectin levels in men,” Metabolism, vol. 58, no. 4, pp. 552–559, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Fasshauer, J. Klein, S. Neumann, M. Eszlinger, and R. Paschke, “Adiponectin gene expression is inhibited by β-adrenergic stimulation via protein kinase A in 3T3-L1 adipocytes,” FEBS Letters, vol. 507, no. 2, pp. 142–146, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. R. G. McMurray, W. A. Forsythe, M. H. Mar, and C. J. Hardy, “Exercise intensity-related responses of β-endorphin and catecholamines,” Medicine and Science in Sports and Exercise, vol. 19, no. 6, pp. 570–574, 1987. View at Google Scholar · View at Scopus