Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2012, Article ID 207426, 9 pages
http://dx.doi.org/10.1155/2012/207426
Research Article

Effects of 16-Week Consumption of Caffeinated and Decaffeinated Instant Coffee on Glucose Metabolism in a Randomized Controlled Trial

1Department of Geriatric Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
2Department of Preventive Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
3Department of Clinical Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
4Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Higashi-ku, Fukuoka 812-8582, Japan

Received 4 April 2012; Revised 9 October 2012; Accepted 9 October 2012

Academic Editor: Cindy Davis

Copyright © 2012 Keizo Ohnaka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Van Dam and F. B. Hu, “Coffee consumption and risk of type 2 diabetes: a systematic review,” Journal of the American Medical Association, vol. 294, no. 1, pp. 97–104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Huxley, C. M. Y. Lee, F. Barzi et al., “Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis,” Archives of Internal Medicine, vol. 169, no. 22, pp. 2053–2063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Salazar-Martinez, W. C. Willett, A. Ascherio et al., “Coffee consumption and risk for type 2 diabetes mellitus,” Annals of Internal Medicine, vol. 140, no. 1, pp. 1–8, 2004. View at Google Scholar · View at Scopus
  4. R. M. Van Dam, W. C. Willett, J. E. Manson, and F. B. Hu, “Coffee, caffeine, and risk of type 2 diabetes: a prospective cohort study in younger and middle-aged U.S. women,” Diabetes Care, vol. 29, no. 2, pp. 398–403, 2006. View at Google Scholar · View at Scopus
  5. M. A. Pereira, E. D. Parker, and A. R. Folsom, “Coffee consumption and risk of type 2 diabetes mellitus: an 11-year prospective study of 28 812 postmenopausal women,” Archives of Internal Medicine, vol. 166, no. 12, pp. 1311–1316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. T. E. Graham, P. Sathasivam, M. Rowland, N. Marko, F. Greer, and D. Battram, “Caffeine ingestion elevates plasma insulin response in humans during an oral glucose tolerance test,” Canadian Journal of Physiology and Pharmacology, vol. 79, no. 7, pp. 559–565, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. L. E. Robinson, S. Savani, D. S. Battram, D. H. McLaren, P. Sathasivam, and T. E. Graham, “Caffeine ingestion before an oral glucose tolerance test impairs blood glucose management in men with type 2 diabetes,” Journal of Nutrition, vol. 134, no. 10, pp. 2528–2533, 2004. View at Google Scholar · View at Scopus
  8. H. J. Petrie, S. E. Chown, L. M. Belfie et al., “Caffeine ingestion increases the insulin response to an oral-glucose-tolerance test in obese men before and after weight loss,” American Journal of Clinical Nutrition, vol. 80, no. 1, pp. 22–28, 2004. View at Google Scholar · View at Scopus
  9. D. S. Battram, R. Arthur, A. Weekes, and T. E. Graham, “The glucose intolerance induced by caffeinated coffee ingestion is less pronounced than that due to alkaloid caffeine in men,” Journal of Nutrition, vol. 136, no. 5, pp. 1276–1280, 2006. View at Google Scholar · View at Scopus
  10. L. L. Moisey, S. Kacker, A. C. Bickerton, L. E. Robinson, and T. E. Graham, “Caffeinated coffee consumption impairs blood glucose homeostasis in response to high and low glycemic index meals in healthy men,” American Journal of Clinical Nutrition, vol. 87, no. 5, pp. 1254–1261, 2008. View at Google Scholar · View at Scopus
  11. F. Greer, R. Hudson, R. Ross, and T. Graham, “Caffeine ingestion decreases glucose disposal during a hyperinsulinemic-euglycemic clamp in sedentary humans,” Diabetes, vol. 50, no. 10, pp. 2349–2354, 2001. View at Google Scholar · View at Scopus
  12. G. B. Keijzers, B. E. De Galan, C. J. Tack, and P. Smits, “Caffeine can decrease insulin sensitivity in humans,” Diabetes Care, vol. 25, no. 2, pp. 364–369, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Yoshida, M. Hayakawa, and E. Niki, “Evaluation of the antioxidant effects of coffee and its components using the biomarkers hydroxyoctadecadienoic acid and isoprostane,” Journal of Oleo Science, vol. 57, no. 12, pp. 691–697, 2008. View at Google Scholar · View at Scopus
  14. E. M. Marinova, A. Toneva, and N. Yanishlieva, “Comparison of the antioxidative properties of caffeic and chlorogenic acids,” Food Chemistry, vol. 114, no. 4, pp. 1498–1502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. T. MacKenzie, R. Comi, P. Sluss et al., “Metabolic and hormonal effects of caffeine: randomized, double-blind, placebo-controlled crossover trial,” Metabolism, vol. 56, no. 12, pp. 1694–1698, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. M. Van Dam, W. J. Pasman, and P. Verhoef, “Effects of coffee consumption on fasting blood glucose and insulin concentrations: randomized controlled trials in healthy volunteers,” Diabetes Care, vol. 27, no. 12, pp. 2990–2992, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. N. M. Wedick, A. M. Brennan, Q. Sun, F. B. Hu, C. S. Mantzoros, and R. M. van Dam, “Effects of caffeinated and decaffeinated coffee on biological risk factors for type 2 diabetes: a randomized controlled trial,” Nutrition Journal, vol. 10, no. 93, pp. 1–9, 2011. View at Google Scholar
  18. K. Kempf, C. Herder, I. Erlund et al., “Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial,” American Journal of Clinical Nutrition, vol. 91, no. 4, pp. 950–957, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Lopez-Garcia, R. M. Van Dam, L. Qi, and F. B. Hu, “Coffee consumption and markers of inflammation and endothelial dysfunction in healthy and diabetic women,” American Journal of Clinical Nutrition, vol. 84, no. 4, pp. 888–893, 2006. View at Google Scholar · View at Scopus
  20. C. J. Williams, J. L. Fargnoli, J. J. Hwang et al., “Coffee consumption is associated with higher plasma adiponectin concentrations in women with or without type 2 diabetes: a prospective cohort study,” Diabetes Care, vol. 31, no. 3, pp. 504–507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Zampelas, D. B. Panagiotakos, C. Pitsavos, C. Chrysohoou, and C. Stefanadis, “Associations between coffee consumption and inflammatory markers in healthy persons: the ATTICA study,” American Journal of Clinical Nutrition, vol. 80, no. 4, pp. 862–867, 2004. View at Google Scholar · View at Scopus
  22. E. J. Erlandsen and E. Randers, “Reference interval for serum C-reactive protein in healthy blood donors using the Dade Behring N Latex CRP mono assay,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 60, no. 1, pp. 37–44, 2000. View at Google Scholar · View at Scopus
  23. Y. Arita, S. Kihara, N. Ouchi et al., “Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity,” Biochemical and Biophysical Research Communications, vol. 257, no. 1, pp. 79–83, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Nakano, S. Tajima, A. Yoshimi et al., “A novel enzyme-linked immunosorbent assay specific for high-molecular-weight adiponectin,” Journal of Lipid Research, vol. 47, no. 7, pp. 1572–1582, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. O. O. Akinyinka, A. Sowunmi, R. Honeywell, and A. G. Renwick, “The pharmacokinetics of caffeine in Nigerian children suffering from malaria and kwashiorkor,” European Journal of Clinical Pharmacology, vol. 56, no. 2, pp. 153–158, 2000. View at Google Scholar · View at Scopus
  26. T. Okada, D. Kobayashi, S. Kono, and T. Shimazoe, “Clinical research on improvement of glucose metabolic marker level by coffee drinking—validity of saliva caffeine concentration measurement,” Yakugaku Zasshi, vol. 130, no. 5, pp. 713–715, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Matsuda and R. A. DeFronzo, “Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp,” Diabetes Care, vol. 22, no. 9, pp. 1462–1470, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. D. R. Matthews, J. P. Hosker, and A. S. Rudenski, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Google Scholar · View at Scopus
  29. J. A. Greenberg, C. N. Boozer, and A. Geliebter, “Coffee, diabetes, and weight control,” American Journal of Clinical Nutrition, vol. 84, no. 4, pp. 682–693, 2006. View at Google Scholar · View at Scopus
  30. S. Rudelle, M. G. Ferruzzi, I. Cristiani et al., “Effect of a thermogenic beverage on 24-hour energy metabolism in humans,” Obesity, vol. 15, no. 2, pp. 349–355, 2007. View at Google Scholar · View at Scopus
  31. E. Lopez-Garcia, R. M. Van Dam, S. Rajpathak, W. C. Willett, J. E. Manson, and F. B. Hu, “Changes in caffeine intake and long-term weight change in men and women,” American Journal of Clinical Nutrition, vol. 83, no. 3, pp. 674–680, 2006. View at Google Scholar · View at Scopus
  32. T. Yamaji, T. Mizoue, S. Tabata et al., “Coffee consumption and glucose tolerance status in middle-aged Japanese men,” Diabetologia, vol. 47, no. 12, pp. 2145–2151, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. R. M. Van Dam, J. M. Dekker, G. Nijpels, C. D. A. Stehouwer, L. M. Bouter, and R. J. Heine, “Coffee consumption and incidence of impaired fasting glucose, impaired glucose tolerance, and type 2 diabetes: the Hoorn Study,” Diabetologia, vol. 47, no. 12, pp. 2152–2159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Hemmerle, H. J. Burger, P. Below et al., “Chlorogenic acid and synthetic chlorogenic acid derivatives: novel inhibitors of hepatic glucose-6-phosphate translocase,” Journal of Medicinal Chemistry, vol. 40, no. 2, pp. 137–145, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. K. L. Johnston, M. N. Clifford, and L. M. Morgan, “Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine,” American Journal of Clinical Nutrition, vol. 78, no. 4, pp. 728–733, 2003. View at Google Scholar · View at Scopus
  36. J. Shearer, E. A. Sellars, A. Farah, T. E. Graham, and D. H. Wasserman, “Effects of chronic coffee consumption on glucose kinetics in the conscious rat,” Canadian Journal of Physiology and Pharmacology, vol. 85, no. 8, pp. 823–830, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Cheng, X. Liu, H. Gong et al., “Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: possible link between coffee consumption and diabetes mellitus,” Journal of Agricultural and Food Chemistry, vol. 59, no. 24, pp. 13147–13155, 2011. View at Google Scholar
  38. J. D. Lane, M. N. Feinglos, and R. S. Surwit, “Caffeine increases ambulatory glucose and postprandial responses in coffee drinkers with type 2 diabetes,” Diabetes Care, vol. 31, no. 2, pp. 221–222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. J. D. Krebs, A. Parry-Strong, M. Weatherall, R. W. Carroll, and M. Downie, “A cross-over study of the acute effects of espresso coffee on glucose tolerance and insulin sensitivity in people with type 2 diabetes mellitus,” Metabolism, vol. 61, no. 9, pp. 1231–1237, 2012. View at Google Scholar
  40. X. M. Han, D. S. Ou-Yang, P. X. Lu et al., “Plasma caffeine metabolite ratio (17X/137X) in vivo associated with G-2964A and C734A polymorphisms of human CYP1A2,” Pharmacogenetics, vol. 11, no. 5, pp. 429–435, 2001. View at Publisher · View at Google Scholar · View at Scopus