Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2012 (2012), Article ID 257959, 7 pages
http://dx.doi.org/10.1155/2012/257959
Clinical Study

Culture Positivity of CVCs Used for TPN: Investigation of an Association with Catheter-Related Infection and Comparison of Causative Organisms between ICU and Non-ICU CVCs

1Department of Intensive Care Medicine, Mater Misericordiae University Hospital, Eccles Street, Dublin 11, Ireland
2Department of Microbiology, Mater Misericordiae University Hospital, Eccles Street, Dublin, Ireland
3Department of Public Health Medicine, Geary Institute, University College Dublin, Belfield, Dublin 4, Ireland

Received 30 June 2011; Revised 20 October 2011; Accepted 16 January 2012

Academic Editor: Maurizio Muscaritoli

Copyright © 2012 Criona Walshe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. E. Marik, “Fever in the ICU,” Chest, vol. 117, no. 3, pp. 855–869, 2000. View at Google Scholar · View at Scopus
  2. R. O. Darouiche, I. I. Raad, S. O. Heard et al., “A comparison of two antimicrobial-impregnated central venous catheters,” The New England Journal of Medicine, vol. 340, no. 1, pp. 1–8, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. J. S. Garland, C. P. Alex, C. D. Mueller et al., “A randomized trial comparing povidone-iodine to a chlorhexidine gluconate-impregnated dressing for prevention of central venous catheter infections in neonates,” Pediatrics, vol. 107, no. 6, pp. 1431–1437, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Levy, J. Katz, E. Solter et al., “Chlorhexidine-impregnated dressing for prevention of colonization of central venous catheters in infants and children: a randomized controlled study,” Pediatric Infectious Disease Journal, vol. 24, no. 8, pp. 676–679, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. D. G. Maki, L. A. Mermel, D. Kluger et al., “The efficacy of a chlorhexidine-impregnated sponge (Biopatch) for the prevention of intravascular catheter-related infection—a prospective, randomized, controlled, multicenter study,” in Interscience Conference on Antimicrobial Agents and Chemotherapy, vol. 10, September 2000, Abstract 422.
  6. O. Mimoz, L. Pieroni, C. Lawrence et al., “Prospective, randomized trial of two antiseptic solutions for prevention of central venous or arterial catheter colonization and infection in intensive care unit patients,” Critical Care Medicine, vol. 24, no. 11, pp. 1818–1823, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Walz, R. L. Avelar, K. J. Longtine, K. L. Carter, L. A. Mermel, and S. O. Heard, “Anti-infective external coating of central venous catheters: a randomized, noninferiority trial comparing 5-fluorouracil with chlorhexidine/silver sulfadiazine in preventing catheter colonization,” Critical Care Medicine, vol. 38, no. 11, pp. 2095–2102, 2010. View at Publisher · View at Google Scholar
  8. G. Yilmaz, R. Caylan, K. Aydin, M. Topbas, and I. Koksal, “Effect of education on the rate of and the understanding of risk factors for intravascular catheter-related infections,” Infection Control and Hospital Epidemiology, vol. 28, no. 6, pp. 689–694, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. A. Mermel, R. D. McCormick, S. R. Springman, and D. G. Maki, “The pathogenesis and epidemiology of catheter-related infection with pulmonary artery swan-ganz catheters: a prospective study utilizing molecular subtyping,” American Journal of Medicine, vol. 91, no. 3, pp. 197S–205S, 1991. View at Google Scholar · View at Scopus
  10. N. Safdar and D. G. Maki, “The pathogenesis of catheter-related bloodstream infection with noncuffed short-term central venous catheters,” Intensive Care Medicine, vol. 30, no. 1, pp. 62–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Climo, D. Diekema, D. K. Warren et al., “Prevalence of the use on central venous access devices within and outside the intensive care unit: results of a survey among hospitals in the Prevention Epicenter Program of the Centers for Disease Control and Prevention,” Infection Control and Hospital Epidemiology, vol. 24, no. 12, pp. 942–945, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. A. J. Kallen, P. R. Patel, and N. P. O'Grady, “Preventing catheter-related bloodstream infections outside the intensive care unit: expanding prevention to new settings,” Clinical Infectious Diseases, vol. 51, no. 3, pp. 335–341, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Marschall, C. Leone, M. Jones, D. Nihill, V. J. Fraser, and D. K. Warren, “Catheter-associated bloodstream infections in general medical patients outside the intensive care unit: a surveillance study,” Infection Control and Hospital Epidemiology, vol. 28, no. 8, pp. 905–909, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. C. C. Tan, Y. Zanariah, K. I. Lim, and S. Balan, “Central venous catheter-related blood stream infections: incidence and an analysis of risk factors,” Medical Journal of Malaysia, vol. 62, no. 5, pp. 370–374, 2007. View at Google Scholar · View at Scopus
  15. W. Zingg, H. Sax, C. Inan et al., “Hospital-wide surveillance of catheter-related bloodstream infection: from the expected to the unexpected,” Journal of Hospital Infection, vol. 73, no. 1, pp. 41–46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. C. M. Walshe, K. S. Boner, J. Bourke, R. Hone, and D. Phelan, “Diagnosis of catheter-related bloodstream infection in a total parenteral nutrition population: inclusion of sepsis defervescence after removal of culture-positive central venous catheter,” Journal of Hospital Infection, vol. 76, no. 2, pp. 119–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. L. Pearson, “Guideline for prevention of intravascular device-related infections—part I. Intravascular device-related infections: an overview,” American Journal of Infection Control, vol. 24, no. 4, pp. 262–277, 1996. View at Google Scholar
  18. D. G. Maki, C. E. Weise, and H. W. Sarafin, “A semiquantitative culture method for identifying intravenous catheter related infection,” The New England Journal of Medicine, vol. 296, no. 23, pp. 1305–1309, 1977. View at Google Scholar · View at Scopus
  19. R. J. Pratt, C. M. Pellowe, J. A. Wilson et al., “epic2: national evidence-based guidelines for preventing healthcare-associated infections in NHS hospitals in England,” Journal of Hospital Infection, vol. 65, supplement 1, pp. S1–S59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. “American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis,” Critical Care Medicine, vol. 20, no. 6, pp. 864–874, 1992. View at Scopus
  21. C. M. Walshe, K. S. Boner, J. Bourke et al., “Catheter-related blood stream infection (CRBSI) in TPN patients: benefit of an educational programme and multimodal expression of CRBSI incidence,” Clinical Governance, vol. 15, no. 4, pp. 292–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. D. G. Maki, “Pathogenesis, prevention, and management of infections due to intravascular devices used for infusion therapy,” in Infections Associated with Indwelling Medical Devices, A. Bisno and F. Waldvogel, Eds., pp. 161–177, American Society for Microbiology, Washington, DC, USA, 1989. View at Google Scholar
  23. E. Tacconelli, M. Tumbarello, M. Pittiruti et al., “Central venous catheter-related sepsis in a cohort of 366 hospitalised patients,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 16, no. 3, pp. 203–209, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. R. P. Wenzel and M. B. Edmond, “The evolving technology of venous access,” The New England Journal of Medicine, vol. 340, no. 1, pp. 48–50, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Hammarskjöld, S. Berg, H. Hanberger, and B. E. Malmvall, “Low incidence of arterial catheter infections in a Swedish intensive care unit: risk factors for colonisation and infection,” Journal of Hospital Infection, vol. 76, no. 2, pp. 130–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. D. Khare, S. S. Bukhari, A. Swann, P. Spiers, I. McLaren, and J. Myers, “Reduction of catheter-related colonisation by the use of a silver zeolite-impregnated central vascular catheter in adult critical care,” Journal of Infection, vol. 54, no. 2, pp. 146–150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Luft, C. Schmoor, C. Wilson et al., “Central venous catheter-associated bloodstream infection and colonisation of insertion site and catheter tip. What are the rates and risk factors in haematology patients?” Annals of Hematology, vol. 89, no. 12, pp. 1265–1275, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. B. J. A. Rijnders, E. Van Wijngaerden, and W. E. Peetermans, “Catheter-tip colonization as a surrogate end point in clinical studies on catheter-related bloodstream infection: how strong is the evidence?” Clinical Infectious Diseases, vol. 35, no. 9, pp. 1053–1058, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. L. A. Mermel, L. Mermel, and B. Hudson, “Prevention of intravascular catheter-related infections,” Annals of Internal Medicine, vol. 132, no. 5, pp. 391–402, 2000. View at Google Scholar · View at Scopus
  30. M. Böswald, S. Lugauer, A. Regenfus et al., “Reduced rates of catheter-associated infection by use of a new silver-impregnated central venous catheter,” Infection, vol. 27, supplement 1, pp. S56–S60, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. D. G. Maki, S. M. Stolz, S. Wheeler, and L. A. Mermel, “Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter: a randomized, controlled trial,” Annals of Internal Medicine, vol. 127, no. 4, pp. 257–266, 1997. View at Google Scholar · View at Scopus
  32. I. Raad, R. Darouiche, J. Dupuis et al., “Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections: a randomized, double-blind trial,” Annals of Internal Medicine, vol. 127, no. 4, pp. 267–274, 1997. View at Google Scholar
  33. S. Tennenberg, M. Lieser, B. McCurdy et al., “A prospective randomized trial of an antibiotic- and antiseptic-coated central venous catheter in the prevention of catheter-related infections,” Archives of Surgery, vol. 132, no. 12, pp. 1348–1351, 1997. View at Google Scholar · View at Scopus
  34. D. L. Veenstra, S. Saint, S. Saha, T. Lumley, and S. D. Sullivan, “Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis,” JAMA, vol. 281, no. 3, pp. 261–267, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. M. G. Beghetto, J. Victorino, L. Teixeira, and M. J. De Azevedo, “Parenteral nutrition as a risk factor for central venous catheter-related infection,” Journal of Parenteral and Enteral Nutrition, vol. 29, no. 5, pp. 367–373, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. H. S. Chen, F. D. Wang, M. Lin, Y. C. Lin, L. J. Huang, and C. Y. Liu, “Risk factors for central venous catheter-related infections in general surgery,” Journal of Microbiology, Immunology and Infection, vol. 39, no. 3, pp. 231–236, 2006. View at Google Scholar · View at Scopus
  37. F. D. Wang, Y. Y. Cheng, S. P. Kung, Y. M. Tsai, and C. Y. Liu, “Risk factors of catheter-related infections in total parenteral nutrition catheterization,” Chinese Medical Journal, vol. 64, no. 4, pp. 223–230, 2001. View at Google Scholar · View at Scopus
  38. M. Ishizuka, H. Nagata, K. Takagi, and K. Kubota, “Total parenteral nutrition is a major risk factor for central venous catheter-related bloodstream infection in colorectal cancer patients receiving postoperative chemotherapy,” European Surgical Research, vol. 41, no. 4, pp. 341–345, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. L. L. Ioannides-Demos, L. Liolios, D. J. Topliss, and A. J. McLean, “A prospective audit of total parenteral nutrition at a major teaching hospital,” Medical Journal of Australia, vol. 163, no. 5, pp. 233–237, 1995. View at Google Scholar · View at Scopus
  40. I. M. Shapey, M. A. Foster, T. Whitehouse, P. Jumaa, and J. F. Bion, “Central venous catheter-related bloodstream infections: improving post-insertion catheter care,” Journal of Hospital Infection, vol. 71, no. 2, pp. 117–122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. W. E. Trick, M. O. Vernon, S. F. Welbel, M. F. Wisniewski, J. A. Jernigan, and R. A. Weinstein, “Unnecessary use of central venous catheters: the need to look outside the intensive care unit,” Infection Control and Hospital Epidemiology, vol. 25, no. 3, pp. 266–268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Zingg, H. Sax, C. Inan et al., “Hospital-wide surveillance of catheter-related bloodstream infection: from the expected to the unexpected,” Journal of Hospital Infection, vol. 73, no. 1, pp. 41–46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. http://www.hpsc.ie/hpsc/A-Z/MicrobiologyAntimicrobialResistance/InfectionControlandHAI/Surveillance/20102011NationalCatheter-RelatedInfectionPilotStudy/File,12711,en.pdf.
  44. http://www.sicsag.scot.nhs.uk/SICSAG_HPS_Pilot_Report_2011.pdf.
  45. J. R. Gowardman, I. K. Robertson, S. Parkes, and C. M. Rickard, “Influence of insertion site on central venous catheter colonization and bloodstream infection rates,” Intensive Care Medicine, vol. 34, no. 6, pp. 1038–1045, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Marschall, “Catheter-associated bloodstream infections: looking outside of the ICU,” American Journal of Infection Control, vol. 36, no. 10, pp. S172.e5–S172.e8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. R. P. Vonberg, M. Behnke, C. Geffers et al., “Device-associated infection rates for non-intensive care unit patients,” Infection Control and Hospital Epidemiology, vol. 27, no. 4, pp. 357–361, 2006. View at Publisher · View at Google Scholar · View at Scopus