Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2012, Article ID 278678, 9 pages
http://dx.doi.org/10.1155/2012/278678
Clinical Study

The Acute and Residual Effect of a Single Exercise Session on Meal Glucose Tolerance in Sedentary Young Adults

Section of Diabetes and Endocrinology, Department of Pediatrics, University of Oklahoma Health Sciences Center, 1200 Children's Ave, Suite 4500, Oklahoma City, OK 73104, USA

Received 5 December 2011; Revised 10 March 2012; Accepted 16 March 2012

Academic Editor: Catherine Weikart Yeckel

Copyright © 2012 Kevin R. Short et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. De Onis, M. Blössner, and E. Borghi, “Global prevalence and trends of overweight and obesity among preschool children,” American Journal of Clinical Nutrition, vol. 92, no. 5, pp. 1257–1264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. L. L. Liu, J. M. Lawrence, C. Davis et al., “Prevalence of overweight and obesity in youth with diabetes in USA: the SEARCH for Diabetes in Youth Study,” Pediatric Diabetes, vol. 11, no. 1, pp. 4–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. C. L. Ogden, M. D. Carroll, L. R. Curtin, M. A. McDowell, C. J. Tabak, and K. M. Flegal, “Prevalence of overweight and obesity in the United States, 1999–2004,” Journal of the American Medical Association, vol. 295, no. 13, pp. 1549–1555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. T. S. Church, C. E. Finley, C. P. Earnest, J. B. Kampert, L. W. Gibbons, and S. N. Blair, “Relative associations of fitness and fatness to fibrinogen, white blood cell count, uric acid and metabolic syndrome,” International Journal of Obesity, vol. 26, no. 6, pp. 805–813, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. K. S. Vimaleswaran, S. Li, J. H. Zhao et al., “Physical activity attenuates the body mass index-increasing influence of genetic variation in the FTO gene,” American Journal of Clinical Nutrition, vol. 90, no. 2, pp. 425–428, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. O. Hill, H. R. Wyatt, G. W. Reed, and J. C. Peters, “Obesity and the environment: where do we go from here?” Science, vol. 299, no. 5608, pp. 853–855, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Lee, J. L. Kuk, P. T. Katzmarzyk, S. N. Blair, T. S. Church, and R. Ross, “Cardiorespiratory fitness attenuates metabolic risk independent of abdominal subcutaneous and visceral fat in men,” Diabetes Care, vol. 28, no. 4, pp. 895–901, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. G. P. Nassis, K. Papantakou, K. Skenderi et al., “Aerobic exercise training improves insulin sensitivity without changes in body weight, body fat, adiponectin, and inflammatory markers in overweight and obese girls,” Metabolism, vol. 54, no. 11, pp. 1472–1479, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Perseghin, T. B. Price, K. F. Petersen et al., “Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects,” New England Journal of Medicine, vol. 335, no. 18, pp. 1357–1362, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. K. R. Short, J. L. Vittone, M. L. Bigelow et al., “Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity,” Diabetes, vol. 52, no. 8, pp. 1888–1896, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. C. A. Slentz, L. B. Aiken, J. A. Houmard et al., “Inactivity, exercise, and visceral fat. STRRIDE: a randomized, controlled study of exercise intensity and amount,” Journal of Applied Physiology, vol. 99, no. 4, pp. 1613–1618, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. O. Holloszy, “Invited review: exercise-induced increase in muscle insulin sensitivity,” Journal of Applied Physiology, vol. 99, no. 1, pp. 338–343, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. K. J. Mikines, B. Sonne, P. A. Farrell, B. Tronier, and H. Galbo, “Effect of physical execise on sensitivity and responsiveness to insulin in humans,” American Journal of Physiology, vol. 254, pp. E248–E259, 1988. View at Google Scholar
  14. R. Koopman, R. J. F. Manders, A. H. G. Zorenc et al., “A single session of resistance exercise enhances insulin sensitivity for at least 24 h in healthy men,” European Journal of Applied Physiology, vol. 94, no. 1-2, pp. 180–187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. K. A. Holtz, B. R. Stephens, C. G. Sharoff, S. R. Chipkin, and B. Braun, “The effect of carbohydrate availability following exercise on whole-body insulin action,” Applied Physiology, Nutrition and Metabolism, vol. 33, no. 5, pp. 946–956, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. E. P. Weiss, H. Arif, D. T. Villareal, E. Marzetti, and J. O. Holloszy, “Endothelial function after high-sugar-food ingestion improves with endurance exercise performed on the previous day,” American Journal of Clinical Nutrition, vol. 88, no. 1, pp. 51–57, 2008. View at Google Scholar · View at Scopus
  17. J. B. Mitchell, J. R. Rowe, M. Shah et al., “Effect of prior exercise on postprandial triglycerides in overweight young women after ingesting a high-carbohydrate meal,” International Journal of Sport Nutrition and Exercise Metabolism, vol. 18, no. 1, pp. 49–65, 2008. View at Google Scholar · View at Scopus
  18. R. E. Hasson, K. Granados, S. Chipkin, P. S. Freedson, and B. Braun, “Effects of a single exercise bout on insulin sensitivity in black and white individuals,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 10, pp. E219–E223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. C. A. Macera, D. A. Jones, and M. M. Yore, “Prevalence of physical activity, including lifestyle activities among adults: United States, 2000-2001,” Morbidity and Mortality Weekly Report, vol. 52, pp. 764–769, 2003. View at Google Scholar
  20. D. K. Eaton, L. Kann, S. Kinchen et al., “Youth risk behavior surveillance—United States, 2009,” Morbidity and Mortality Weekly Report, vol. 59, no. 5, pp. 1–142, 2010. View at Google Scholar · View at Scopus
  21. R. C. Foster, L. M. Lanningham-Foster, C. Manohar et al., “Precision and accuracy of an ankle-worn accelerometer-based pedometer in step counting and energy expenditure,” Preventive Medicine, vol. 41, no. 3-4, pp. 778–783, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Welch, S. S. P. Gebhart, R. N. Bergman, and L. S. Phillips, “Minimal model analysis of intravenous glucose tolerance test-derived insulin sensitivity in diabetic subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 71, no. 6, pp. 1508–1518, 1990. View at Google Scholar · View at Scopus
  23. D. L. Graf, L. V. Pratt, C. N. Hester, and K. R. Short, “Playing active video games increases energy expenditure in children,” Pediatrics, vol. 124, no. 2, pp. 534–540, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Matsuda and R. A. DeFronzo, “Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp,” Diabetes Care, vol. 22, no. 9, pp. 1462–1470, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Pacini and R. N. Bergman, “MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test,” Computer Methods and Programs in Biomedicine, vol. 23, no. 2, pp. 113–122, 1986. View at Google Scholar · View at Scopus
  26. W. G. Hopkins, “Measures of reliability in sports medicine and science,” Sports Medicine, vol. 30, no. 1, pp. 1–15, 2000. View at Google Scholar · View at Scopus
  27. J. Cohen, Statistical Power Analysis for the Behavioral Sciences, Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 2nd edition, 1988.
  28. R. Muniyappa, S. Lee, H. Chen, and M. J. Quon, “Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage,” American Journal of Physiology, vol. 294, no. 1, pp. E15–E26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. K. M. Utzschneider, R. L. Prigeon, J. Tong et al., “Within-subject variability of measures of beta cell function derived from a 2 h OGTT: implications for research studies,” Diabetologia, vol. 50, no. 12, pp. 2516–2525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. G. M. Steil, J. Murray, R. N. Bergman, and T. A. Buchanan, “Repeatability of insulin sensitivity and glucose effectiveness from the minimal model: implications for study design,” Diabetes, vol. 43, no. 11, pp. 1365–1371, 1994. View at Google Scholar · View at Scopus
  31. C. J. Greenbaum, B. Buckingham, H. P. Chase, and J. Krischer, “Metabolic tests to determine risk for type 1 diabetes in clinical trials,” Diabetes/Metabolism Research and Reviews, vol. 27, pp. 584–589, 2011. View at Google Scholar
  32. K. J. Mather, A. E. Hunt, H. O. Steinberg et al., “Repeatability characteristics of simple indices of insulin resistance: implications for research applications,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 11, pp. 5457–5464, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. M. F. Saad, R. L. Anderson, A. Laws et al., “A comparison between the minimal model and the glucose clamp in the assessment of insulin sensitivity across the spectrum of glucose tolerance. Insulin resistance atherosclerosis study,” Diabetes, vol. 43, pp. 1114–1121, 1994. View at Google Scholar
  34. S. A. Newsom, S. Schenk, K. M. Thomas et al., “Energy deficit after exercise augments lipid mobilization but does not contribute to the exercise-induced increase in insulin sensitivity,” Journal of Applied Physiology, vol. 108, no. 3, pp. 554–560, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. American College of Sports Medicine and American Diabetes Association, “Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: joint position statement,” Medicine and Science in Sports and Exercise, vol. 42, pp. 2282–2303, 2010. View at Google Scholar
  36. J. P. Thyfault, “Setting the stage: possible mechanisms by which acute contraction restores insulin sensitivity in muscle,” American Journal of Physiology, vol. 294, no. 4, pp. R1103–R1110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. B. R. Stephens, K. Granados, T. W. Zderic, M. T. Hamilton, and B. Braun, “Effects of 1 day of inactivity on insulin action in healthy men and women: interaction with energy intake,” Metabolism, vol. 60, no. 7, pp. 941–949, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. B. A. Irving, K. R. Short, K. S. Nair, and C. S. Stump, “Nine days of intensive exercise training improves mitochondrial function but not insulin action in adult offspring of mothers with type 2 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 7, pp. E1137–E1141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Kacerovsky-Bielesz, M. Kacerovsky, M. Chmelik et al., “A single nucleotide polymorphism associates with the response of muscle ATP synthesis to long-term exercise training in relatives of type 2 diabetic humans,” Diabetes Care, vol. 35, pp. 350–357, 2012. View at Google Scholar
  40. G. Kacerovsky-Bielesz, M. Chmelik, C. Ling et al., “Short-term exercise training does not stimulate skeletal muscle ATP synthesis in relatives of humans with type 2 diabetes,” Diabetes, vol. 58, no. 6, pp. 1333–1341, 2009. View at Publisher · View at Google Scholar · View at Scopus