Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2012, Article ID 351796, 17 pages
http://dx.doi.org/10.1155/2012/351796
Research Article

Microarray Analyses of Genes Differentially Expressed by Diet (Black Beans and Soy Flour) during Azoxymethane-Induced Colon Carcinogenesis in Rats

Department of Food Science and Human Nutrition, 106 GM Trout Building, Michigan State University, East Lansing, MI 48824, USA

Received 26 May 2011; Accepted 25 October 2011

Academic Editor: H. K. Biesalski

Copyright © 2012 Elizabeth A. Rondini and Maurice R. Bennink. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ferlay, H. Shin, F. Bray et al., “GLOBOCAN 2008, Cancer Incidence and Mortality Worldwide. IARC CancerBase No. 10 [Internet],” Lyon, France, 2010.
  2. B. Armstrong and R. Doll, “Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices,” International Journal of Cancer, vol. 15, no. 4, pp. 617–631, 1975. View at Google Scholar · View at Scopus
  3. R. Doll and R. Peto, “The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today,” Journal of the National Cancer Institute, vol. 66, no. 6, pp. 1191–1308, 1981. View at Google Scholar · View at Scopus
  4. WCRF and AICR, Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective, World Cancer Research Fund & American Institute for Cancer Research, Washington, DC, USA, 2007.
  5. J. D. Potter, “Colorectal cancer: molecules and populations,” Journal of the National Cancer Institute, vol. 91, no. 11, pp. 916–932, 1999. View at Google Scholar · View at Scopus
  6. K. A. Steinmetz and J. D. Potter, “Food-group consumption and colon cancer in the Adelaide case-control study. I. Vegetables and fruit,” International Journal of Cancer, vol. 53, no. 5, pp. 711–719, 1993. View at Google Scholar · View at Scopus
  7. G. E. Fraser, “Associations between diet and cancer, ischemic heart disease, and all- cause mortality in non-Hispanic white California Seventh-day Adventists,” American Journal of Clinical Nutrition, vol. 70, no. 3, 1999. View at Google Scholar · View at Scopus
  8. P. N. Singh and G. E. Fraser, “Dietary risk factors for colon cancer in a low-risk population,” American Journal of Epidemiology, vol. 148, no. 8, pp. 761–774, 1998. View at Google Scholar · View at Scopus
  9. L. L. Marchand, J. H. Hankin, L. R. Wilkens, L. N. Kolonel, H. N. Englyst, and L. C. Lyu, “Dietary fiber and colorectal cancer risk,” Epidemiology, vol. 8, no. 6, pp. 658–665, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Deneo-Pellegrini, P. Boffetta, E. De Stefani, A. Ronco, P. Brennan, and M. Mendilaharsu, “Plant foods and differences between colon and rectal cancers,” European Journal of Cancer Prevention, vol. 11, no. 4, pp. 369–375, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Lanza, T. J. Hartman, P. S. Albert et al., “High dry bean intake and reduced risk of advanced colorectal adenoma recurrence among participants in the polyp prevention trial,” Journal of Nutrition, vol. 136, no. 7, pp. 1896–1903, 2006. View at Google Scholar · View at Scopus
  12. J. S. Witte, M. P. Longnecker, C. L. Bird, E. R. Lee, H. D. Frankl, and R. W. Haile, “Relation of vegetable, fruit, and grain consumption to colorectal adenomatous polyps,” American Journal of Epidemiology, vol. 144, no. 11, pp. 1015–1025, 1996. View at Google Scholar · View at Scopus
  13. P. Correa, “Epidemiological correlations between diet and cancer frequency,” Cancer Research, vol. 41, no. 9, pp. 3685–3690, 1981. View at Google Scholar · View at Scopus
  14. R. F. Jacoby, X. Llor, B. B. Teng, N. O. Davidson, and T. A. Brasitus, “Mutations in the K-ras oncogene induced by 1,2-dimethylhydrazine in preneoplastic and neoplastic rat colonic mucosa,” Journal of Clinical Investigation, vol. 87, no. 2, pp. 624–630, 1991. View at Google Scholar · View at Scopus
  15. A. A. Vivona, B. Shpitz, A. Medline et al., “K-ras mutations in aberrant crypt foci, adenomas and adenocarcinomas during azoxymethane-induced colon carcinogenesis,” Carcinogenesis, vol. 14, no. 9, pp. 1777–1781, 1993. View at Google Scholar · View at Scopus
  16. S. E. Pories, N. Ramchurren, I. Summerhayes, and G. Steele, “Animal models for colon carcinogenesis,” Archives of Surgery, vol. 128, no. 6, pp. 647–653, 1993. View at Google Scholar · View at Scopus
  17. M. Takahashi, K. Fukuda, T. Sugimura, and K. Wakabayashi, “β-catenin is frequently mutated and demonstrates altered cellular location in azoxymethane-induced rat colon tumors,” Cancer Research, vol. 58, no. 1, pp. 42–46, 1998. View at Google Scholar · View at Scopus
  18. M. Perše and A. Cerar, “Morphological and molecular alterations in 1,2 dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 473964, 2011. View at Publisher · View at Google Scholar
  19. J. Chen and X. F. Huang, “The signal pathways in azoxymethane-induced colon cancer and preventive implications,” Cancer Biology & Therapy, vol. 8, no. 14, pp. 1313–1317, 2009. View at Google Scholar · View at Scopus
  20. C. De Filippo, G. Caderni, M. Bazzicalupo et al., “Mutations of the Apc gene in experimental colorectal carcinogenesis induced by azoxymethane in F344 rats,” British Journal of Cancer, vol. 77, no. 12, pp. 2148–2151, 1998. View at Google Scholar · View at Scopus
  21. M. Takahashi, M. Mutoh, T. Kawamori, T. Sugimura, and K. Wakabayashi, “Altered expression of β-catenin, inducible nitric oxide synthase and cyclooxygenase-2 in azoxymethane-induced rat colon carcinogenesis,” Carcinogenesis, vol. 21, no. 7, pp. 1319–1327, 2000. View at Google Scholar · View at Scopus
  22. Y. Yamada, N. Yoshimi, Y. Hirose et al., “Frequent β-catenin gene mutations and accumulations of the protein in the putative preneoplastic lesions lacking macroscopic aberrant crypt foci appearance, in rat colon carcinogenesis,” Cancer Research, vol. 60, no. 13, pp. 3323–3327, 2000. View at Google Scholar · View at Scopus
  23. M. Takahashi, S. Nakatsugi, T. Sugimura, and K. Wakabayashi, “Frequent mutations of the β-catenin gene in mouse colon tumors induced by azoxymethane,” Carcinogenesis, vol. 21, no. 6, pp. 1117–1120, 2000. View at Google Scholar · View at Scopus
  24. R. N. DuBois, A. Radhika, B. S. Reddy, and A. J. Entingh, “Increased cyclooxygenase-2 levels in carcinogen-induced rat colonic tumors,” Gastroenterology, vol. 110, no. 4, pp. 1259–1262, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Ohta, M. Takahashi, and A. Ochiai, “Increased protein expression of both inducible nitric oxide synthase and cyclooxygenase-2 in human colon cancers,” Cancer Letters, vol. 239, no. 2, pp. 246–253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Watanabe, T. Kawamori, S. Nakatsugi, and K. Wakabayashi, “Cox-2 and inos, good targets for chemoprevention of colon cancer,” BioFactors, vol. 12, no. 1–4, pp. 129–133, 2000. View at Google Scholar · View at Scopus
  27. K. Guda, C. Giardina, P. Nambiar, H. Cui, and D. W. Rosenberg, “Aberrant transforming growth factor-β signaling in azoxymethane-induced mouse colon tumors,” Molecular Carcinogenesis, vol. 31, no. 4, pp. 204–213, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Shao, H. Sheng, R. Aramandla et al., “Coordinate regulation of cyclooxygenase-2 and TGF-β1 in replication error-positive colon cancer and azoxymethane-induced rat colonic tumors,” Carcinogenesis, vol. 20, no. 2, pp. 185–191, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Bellam and B. Pasche, “Tgf-beta signaling alterations and colon cancer,” Cancer Treatment and Research, vol. 155, pp. 85–103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. R. Bennink and A. S. Om, “Inhibition of Colon Cancer (CC) by soy phytochemicals but not by soy protein,” The FASEB Journal, vol. 12, no. 5, p. A655, 1998. View at Google Scholar · View at Scopus
  31. M. R. Bennink, A. S. Om, and Y. Miyagi, “Inhibition of colon cancer (CC) by soy flour but not by genistin or a mixture of isoflavones,” The FASEB Journal, vol. 13, p. A50, 1999. View at Google Scholar
  32. L. Hangen and M. R. Bennink, “Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats,” Nutrition and Cancer, vol. 44, no. 1, pp. 60–65, 2002. View at Google Scholar · View at Scopus
  33. E. A. Rondini and M. R. Bennink, “Defatted soy flour, but not soy concentrate, reduces azoxymethane-induced colon carcinogenesis,” Journal of Nutrition, vol. 132, p. 589S, 2002. View at Google Scholar
  34. R. Hakkak, S. Korourian, M. J. J. Ronis, J. M. Johnston, and T. M. Badger, “Soy protein isolate consumption protects against azoxymethane-induced colon tumors in male rats,” Cancer Letters, vol. 166, no. 1, pp. 27–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. J. S. Hughes, C. Ganthavorn, and S. Wilson-Sanders, “Dry beans inhibit azoxymethane-induced colon carcinogenesis in F344 rats,” Journal of Nutrition, vol. 127, no. 12, pp. 2328–2333, 1997. View at Google Scholar · View at Scopus
  36. G. Bobe, K. G. Barrett, R. A. Mentor-Marcel et al., “Dietary cooked navy beans and their fractions attenuate colon carcinogenesis in azoxymethane-induced Ob/Ob mice,” Nutrition and Cancer, vol. 60, no. 3, pp. 373–381, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Liu, A. O. Mokuolu, C. V. Rao, B. S. Reddy, and P. R. Holt, “Regional chemoprevention of carcinogen-induced tumors in rat colon,” Gastroenterology, vol. 109, no. 4, pp. 1167–1172, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. P. G. Reeves, F. H. Nielsen, and G. C. Fahey, “AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet,” Journal of Nutrition, vol. 123, no. 11, pp. 1939–1951, 1993. View at Google Scholar · View at Scopus
  39. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists,” Nucleic Acids Research, vol. 37, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Fujiwara, M. Ochiai, T. Ohta et al., “Global gene expression analysis of rat colon cancers induced by a food-borne carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine,” Carcinogenesis, vol. 25, no. 8, pp. 1495–1505, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. I. C. Lawrance, C. Fiocchi, and S. Chakravarti, “Ulcerative colitis and Crohn's disease: distinctive gene expression profiles and novel susceptibility candidate genes,” Human Molecular Genetics, vol. 10, no. 5, pp. 445–456, 2001. View at Google Scholar · View at Scopus
  43. M. R. Bennink, “Dietary soy reduces colon carcinogenesis in human and rats: soy and colon cancer,” Advances in Experimental Medicine and Biology, vol. 492, pp. 11–17, 2001. View at Google Scholar · View at Scopus
  44. R. Nagashima, K. Maeda, Y. Imai, and T. Takahashi, “Lamina propria macrophages in the human gastrointestinal mucosa: their distribution, immunohistological phenotype, and function,” Journal of Histochemistry and Cytochemistry, vol. 44, no. 7, pp. 721–731, 1996. View at Google Scholar · View at Scopus
  45. I. Maric, P. G. Holt, M. H. Perdue, and J. Bienenstock, “Class II MHC antigen (Ia)-bearing dendritic cells in the epithelium of the rat intestine,” Journal of Immunology, vol. 156, no. 4, pp. 1408–1414, 1996. View at Google Scholar · View at Scopus
  46. D. C. Baumgart and S. R. Carding, “Inflammatory bowel disease: cause and immunobiology,” The Lancet, vol. 369, no. 9573, pp. 1627–1640, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. A. M. Mowat and J. L. Viney, “The anatomical basis of intestinal immunity,” Immunological Reviews, vol. 156, pp. 145–166, 1997. View at Google Scholar · View at Scopus
  48. H. Tlaskalová-Hogenová, M. A. Farré-Castany, R. Štěpánková et al., “The gut as a lymphoepithelial organ: the role of intestinal epithelial cells in mucosal immunity,” Folia Microbiologica, vol. 40, no. 4, pp. 385–391, 1995. View at Publisher · View at Google Scholar
  49. H. Lue, M. Thiele, J. Franz et al., “Macrophage migration inhibitory factor (MIF) promotes cell survival by activation of the Akt pathway and role for CSN5/JAB1 in the control of autocrine MIF activity,” Oncogene, vol. 26, no. 35, pp. 5046–5059, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Leng, C. N. Metz, Y. Fang et al., “MIF signal transduction initiated by binding to CD74,” Journal of Experimental Medicine, vol. 197, no. 11, pp. 1467–1476, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. E. E. Deschner and M. Lipkin, “Study of human rectal epithelial cells in vitro. III. RNA, protein, and DNA synthesis in polyps and adjacent mucosa,” Journal of the National Cancer Institute, vol. 44, no. 1, pp. 175–185, 1970. View at Google Scholar · View at Scopus
  52. K. Fujiwara, M. Ochiai, T. Ubagai et al., “Differential gene expression profiles in colon epithelium of two rat strains with distinct susceptibility to colon carcinogenesis after exposure to PhIP in combination with dietary high fat,” Cancer Science, vol. 94, no. 8, pp. 672–678, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. H. M. Lee, G. H. Greeley, and E. W. Englander, “Age-associated changes in gene expression patterns in the duodenum and colon of rats,” Mechanisms of Ageing and Development, vol. 122, no. 4, pp. 355–371, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. N. Khansari, Y. Shakiba, and M. Mahmoudi, “Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer,” Recent Patents on Inflammation and Allergy Drug Discovery, vol. 3, no. 1, pp. 73–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Federico, F. Morgillo, C. Tuccillo, F. Ciardiello, and C. Loguercio, “Chronic inflammation and oxidative stress in human carcinogenesis,” International Journal of Cancer, vol. 121, no. 11, pp. 2381–2386, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Macarthur, G. L. Hold, and E. M. El-Omar, “Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy,” American Journal of Physiology, vol. 286, no. 4, pp. G515–G520, 2004. View at Google Scholar · View at Scopus
  57. C. J. Van Der Woude, J. H. Kleibeuker, P. L. M. Jansen, and H. Moshage, “Chronic inflammation, apoptosis and (pre-)malignant lesions in the gastro-intestinal tract,” Apoptosis, vol. 9, no. 2, pp. 123–130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Shacter and S. A. Weitzman, “Chronic inflammation and cancer,” Oncology, vol. 16, no. 2, pp. 217–230, 2002. View at Google Scholar · View at Scopus
  59. H. Bartsch and J. Nair, “Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair,” Langenbeck's Archives of Surgery, vol. 391, no. 5, pp. 499–510, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. M. B. Grisham, D. Jourd'heuil, and D. A. Wink, “Chronic inflammation and reactive oxygen and nitrogen metabolism—implications in DNA damage and mutagenesis,” Alimentary Pharmacology and Therapeutics, vol. 14, supplement 1, pp. 3–9, 2000. View at Google Scholar
  61. D. K. Podolsky, “Mucosal immunity and inflammation V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense,” American Journal of Physiology, vol. 277, no. 3, pp. G495–G499, 1999. View at Google Scholar · View at Scopus
  62. M. A. McGuckin, S. K. Lindén, P. Sutton, and T. H. Florin, “Mucin dynamics and enteric pathogens,” Nature Reviews Microbiology, vol. 9, no. 4, pp. 265–278, 2011. View at Publisher · View at Google Scholar
  63. J. R. Turner, “Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application,” American Journal of Pathology, vol. 169, no. 6, pp. 1901–1909, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. J. R. Turner, “Intestinal mucosal barrier function in health and disease,” Nature Reviews Immunology, vol. 9, no. 11, pp. 799–809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Tang, D. R. Clayburgh, N. Mittal et al., “Epithelial NF-κB enhances transmucosal fluid movement by altering tight junction protein composition after T cell activation,” American Journal of Pathology, vol. 176, no. 1, pp. 158–167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Matricon, N. Barnich, and D. Ardid, “Immunopathogenesis of inflammatory bowel disease,” Self/Nonself Immune Recognition and Signaling, vol. 1, no. 4, pp. 299–309, 2010. View at Publisher · View at Google Scholar
  67. S. Y. Salim and J. D. Söderholm, “Importance of disrupted intestinal barrier in inflammatory bowel diseases,” Inflammatory Bowel Diseases, vol. 17, no. 1, pp. 362–381, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. M. A. A. Schepens, A. J. Schonewille, C. Vink et al., “Supplemental calcium attenuates the colitis-related increase in diarrhea, intestinal permeability, and extracellular matrix breakdown in HLA-B27 transgenic rats,” Journal of Nutrition, vol. 139, no. 8, pp. 1525–1533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. G. An, B. Wei, B. Xia et al., “Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans,” Journal of Experimental Medicine, vol. 204, no. 6, pp. 1417–1429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. A. P. Soler, R. D. Miller, K. V. Laughlin, N. Z. Carp, D. M. Klurfeld, and J. M. Mullin, “Increased tight junctional permeability is associated with the development of colon cancer,” Carcinogenesis, vol. 20, no. 8, pp. 1425–1431, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Niv, “Mucin and colorectal cancer,” Israel Medical Association Journal, vol. 2, no. 10, pp. 775–777, 2000. View at Google Scholar
  72. Y. S. Kim, “Mucin glycoproteins in colonic neoplasia,” Keio Journal of Medicine, vol. 47, no. 1, pp. 10–18, 1998. View at Google Scholar · View at Scopus
  73. M. Bruewer, S. Samarin, and A. Nusrat, “Inflammatory bowel disease and the apical junctional complex,” Annals of the New York Academy of Sciences, vol. 1072, pp. 242–252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. F. Vaccina, F. Scorcioni, M. Pedroni et al., “Scanning electron microscopy of aberrant crypt foci in human colorectal mucosa,” Anticancer Research, vol. 18, no. 5 A, pp. 3451–3456, 1998. View at Google Scholar · View at Scopus
  75. S. Nittka, J. Günther, C. Ebisch, A. Erbersdobler, and M. Neumaier, “The human tumor suppressor CEACAM1 modulates apoptosis and is implicated in early colorectal tumorigenesis,” Oncogene, vol. 23, no. 58, pp. 9306–9313, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Nittka, C. Böhm, H. Zentgraf, and M. Neumaier, “The CEACAM1-mediated apoptosis pathway is activated by CEA and triggers dual cleavage of CEACAM1,” Oncogene, vol. 27, no. 26, pp. 3721–3728, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Buscail, J. P. Estève, N. Saint-Laurent et al., “Inhibition of cell proliferation by the somatostatin analogue RC-160 is mediated by somatostatin receptor subtypes SSTR2 and SSTR5 through different mechanisms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 5, pp. 1580–1584, 1995. View at Publisher · View at Google Scholar · View at Scopus
  78. L. Buscail, N. Saint-Laurent, E. Chastre et al., “Loss of sst2 somatostatin receptor gene expression in human pancreatic and colorectal cancer,” Cancer Research, vol. 56, no. 8, pp. 1823–1827, 1996. View at Google Scholar · View at Scopus
  79. C. Casini Raggi, A. Calabrò, D. Renzi et al., “Quantitative evaluation of somatostatin receptor subtype 2 expression in sporadic colorectal tumor and in the corresponding normal mucosa,” Clinical Cancer Research, vol. 8, no. 2, pp. 419–427, 2002. View at Google Scholar · View at Scopus
  80. R. Xiao, T. M. Badger, and F. A. Simmen, “Dietary exposure to soy or whey proteins alters colonic global gene expression profiles during rat colon tumorigenesis,” Molecular Cancer, vol. 4, article 1, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. R. P. Bakshi, S. Galande, and K. Muniyappa, “Functional and regulatory characteristics of eukaryotic type II DNA topoisomerase,” Critical Reviews in Biochemistry and Molecular Biology, vol. 36, no. 1, pp. 1–37, 2001. View at Google Scholar · View at Scopus
  82. B. M. Boman, R. Walters, J. Z. Fields et al., “Colonic crypt changes during adenoma development in familial adenomatous polyposis: immunohistochemical evidence for expansion of the crypt base cell population,” American Journal of Pathology, vol. 165, no. 5, pp. 1489–1498, 2004. View at Google Scholar · View at Scopus
  83. M. Castedo, J. L. Perfettini, T. Roumier, and G. Kroemer, “Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe,” Cell Death and Differentiation, vol. 9, no. 12, pp. 1287–1293, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. W. R. Taylor and G. R. Stark, “Regulation of the G2/M transition by p53,” Oncogene, vol. 20, no. 15, pp. 1803–1815, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. J. H. Cummings, “Short chain fatty acids in the human colon,” Gut, vol. 22, no. 9, pp. 763–779, 1981. View at Google Scholar · View at Scopus
  86. J. H. Cummings and H. N. Englyst, “Fermentation in the human large intestine and the available substrates,” American Journal of Clinical Nutrition, vol. 45, no. 5, pp. 1243–1255, 1987. View at Google Scholar · View at Scopus
  87. S. I. Cook and J. H. Sellin, “Review article: short chain fatty acids in health and disease,” Alimentary Pharmacology and Therapeutics, vol. 12, no. 6, pp. 499–507, 1998. View at Publisher · View at Google Scholar · View at Scopus
  88. S. J. Miller, “Cellular and physiological effects of short-chain fatty acids,” Mini-Reviews in Medicinal Chemistry, vol. 4, no. 8, pp. 839–845, 2004. View at Google Scholar · View at Scopus
  89. A. Hague, A. M. Manning, K. A. Hanlon, L. I. Huschtscha, D. Hart, and C. Paraskeva, “Sodium butyrate induces apoptosis in human colonic tumour cell lines in a p53-independent pathway: implications for the possible role of dietary fibre in the prevention of large-bowel cancer,” International Journal of Cancer, vol. 55, no. 3, pp. 498–505, 1993. View at Publisher · View at Google Scholar · View at Scopus
  90. B. G. Heerdt, M. A. Houston, and L. H. Augenlicht, “Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function,” Cell Growth and Differentiation, vol. 8, no. 5, pp. 523–532, 1997. View at Google Scholar · View at Scopus
  91. L. H. Augenlicht, G. M. Anthony, T. L. Church et al., “Short-chain fatty acid metabolism, apoptosis, and Apc-initiated tumorigenesis in the mouse gastrointestinal mucosa,” Cancer Research, vol. 59, no. 23, pp. 6005–6009, 1999. View at Google Scholar · View at Scopus
  92. R. Thibault, F. Blachier, B. Darcy-Vrillon, P. De Coppet, A. Bourreille, and J. P. Segain, “Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: a transport deficiency,” Inflammatory Bowel Diseases, vol. 16, no. 4, pp. 684–695, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. K. Birkenkamp-Demtroder, L. L. Christensen, S. H. Olesen et al., “Gene expression in colorectal cancer,” Cancer Research, vol. 62, no. 15, pp. 4352–4363, 2002. View at Google Scholar · View at Scopus
  94. A. G. Buckland, E. L. Heeley, and D. C. Wilton, “Bacterial cell membrane hydrolysis by secreted phospholipases A2: a major physiological role of human group IIa sPLA2 involving both bacterial cell wall penetration and interfacial catalysis,” Biochimica et Biophysica Acta, vol. 1484, no. 2-3, pp. 195–206, 2000. View at Publisher · View at Google Scholar · View at Scopus
  95. A. G. Buckland and D. C. Wilton, “The antibacterial properties of secreted phospholipases A2,” Biochimica et Biophysica Acta, vol. 1488, no. 1-2, pp. 71–82, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. R. N. Cunliffe, “α-Defensins in the gastrointestinal tract,” Molecular Immunology, vol. 40, no. 7, pp. 463–467, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. R. N. Cunliffe and Y. R. Mahida, “Expression and regulation of antimicrobial peptides in the gastrointestinal tract,” Journal of Leukocyte Biology, vol. 75, no. 1, pp. 49–58, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. R. Mahida and R. N. Cunliffe, “Defensins and mucosal protection,” Novartis Foundation Symposium, vol. 263, pp. 71–77, 2004. View at Google Scholar · View at Scopus
  99. L. Hazlett and M. Wu, “Defensins in innate immunity,” Cell and Tissue Research, vol. 343, pp. 175–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. Q. Yuan and W. A. Walker, “Innate immunity of the gut: mucosal defense in health and disease,” Journal of Pediatric Gastroenterology and Nutrition, vol. 38, no. 5, pp. 463–473, 2004. View at Google Scholar · View at Scopus
  101. T. Minami, H. Tojo, Y. Shinomura, Y. Matsuzawa, and M. Okamoto, “Increased group II phospholipase A2 in colonic mucosa of patients with Crohn's disease and ulcerative colitis,” Gut, vol. 35, no. 11, pp. 1593–1598, 1994. View at Google Scholar · View at Scopus
  102. S. Yamashita, M. Ogawa, T. Abe et al., “Group II phospholipase A2 in invasive gastric cancer cell line is induced by interleukin 6,” Biochemical and Biophysical Research Communications, vol. 198, no. 3, pp. 878–884, 1994. View at Publisher · View at Google Scholar
  103. T. Ikegami, Y. Matsuzaki, J. Shoda, M. Kano, N. Hirabayashi, and N. Tanaka, “The chemopreventive role of ursodeoxycholic acid in azoxymethane-treated rats: suppressive effects on enhanced group II phospholipase A2 expression in colonic tissue,” Cancer Letters, vol. 134, no. 2, pp. 129–139, 1998. View at Publisher · View at Google Scholar · View at Scopus
  104. M. M. Haapamäki, J. M. Grönroos, H. Nurmi, K. Irjala, K. A. Alanen, and T. J. Nevalainen, “Phospholipase A2 in serum and colonic mucosa in ulcerative colitis,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 59, no. 4, pp. 279–288, 1999. View at Publisher · View at Google Scholar
  105. M. M. Haapamäki, J. M. Grönroos, H. Nurmi, K. Alanen, M. Kallajoki, and T. J. Nevalainen, “Gene expression of group II phospholipase A2 in intestine in ulcerative colitis,” Gut, vol. 40, no. 1, pp. 95–101, 1997. View at Google Scholar
  106. T. J. Nevalainen, M. M. Haapamäki, and J. M. Grönroos, “Roles of secretory phospholipases A2 in inflammatory diseases and trauma,” Biochimica et Biophysica Acta, vol. 1488, no. 1-2, pp. 83–90, 2000. View at Publisher · View at Google Scholar
  107. T. J. Nevalainen, G. G. Graham, and K. F. Scott, “Antibacterial actions of secreted phospholipases A2. Review,” Biochimica et Biophysica Acta, vol. 1781, no. 1-2, pp. 1–9, 2008. View at Publisher · View at Google Scholar
  108. B. P. Kennedy, C. Soravia, J. Moffat et al., “Overexpression of the nonpancreatic secretory group II PLA2 messenger RNA and protein in colorectal adenomas from familial adenomatous polyposis patients,” Cancer Research, vol. 58, no. 3, pp. 500–503, 1998. View at Google Scholar · View at Scopus
  109. L. Tribler, L. T. Jensen, K. Jørgensen et al., “Increased expression and activity of group IIA and X secretory phospholipase A2 in peritumoral versus central colon carcinoma tissue,” Anticancer Research, vol. 27, no. 5, pp. 3179–3185, 2007. View at Google Scholar
  110. T. Minami, Y. Shinomura, J. I. Miyagawa, H. Tojo, M. Okamoto, and Y. Matsuzawa, “Immunohistochemical localization of group II phospholipase A2 in colonic mucosa of patients with inflammatory bowel disease,” American Journal of Gastroenterology, vol. 92, no. 2, pp. 289–292, 1997. View at Google Scholar · View at Scopus
  111. A. P. Femia, C. Luceri, S. Toti, A. Giannini, P. Dolara, and G. Caderni, “Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats,” BMC Cancer, vol. 10, article 194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. G. Zallen, E. E. Moore, J. L. Johnson et al., “New mechanisms by which secretory phospholipase A2 stimulates neutrophils to provoke the release of cytotoxic agents,” Archives of Surgery, vol. 133, no. 11, pp. 1229–1233, 1998. View at Google Scholar · View at Scopus
  113. C. O. Bingham and K. Frank Austen, “Phospholipase A2 enzymes in eicosanoid generation,” Proceedings of the Association of American Physicians, vol. 111, no. 6, pp. 516–524, 1999. View at Google Scholar · View at Scopus
  114. L. A. Marshall and D. W. Morgan, “Modulation of arachidonic acid metabolism: focus on phospholipase A2(s),” Drug News and Perspectives, vol. 11, no. 2, pp. 82–91, 1998. View at Publisher · View at Google Scholar · View at Scopus
  115. N. Droin, J. B. Hendra, P. Ducoroy, and E. Solary, “Human defensins as cancer biomarkers and antitumour molecules,” Journal of Proteomics, vol. 72, no. 6, pp. 918–927, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. R. N. Cunliffe and Y. R. Mahida, “Antimicrobial peptides in innate intestinal host defence,” Gut, vol. 47, no. 1, pp. 16–17, 2000. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Kanmura, H. Uto, M. Numata et al., “Human neutrophil peptides 1-3 are useful biomarkers in patients with active ulcerative colitis,” Inflammatory Bowel Diseases, vol. 15, no. 6, pp. 909–917, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. R. N. Cunliffe, M. Kamal, F. R. A. J. Rose, P. D. James, and Y. R. Mahida, “Expression of antimicrobial neutrophil defensins in epithelial cells of active inflammatory bowel disease mucosa,” Journal of Clinical Pathology, vol. 55, no. 4, pp. 298–304, 2002. View at Google Scholar · View at Scopus
  119. M. Rodríguez-García, H. Oliva, N. Climent, F. García, J. M. Gatell, and T. Gallart, “Human immature monocyte-derived dendritic cells produce and secrete α-defensins 1-3,” Journal of Leukocyte Biology, vol. 82, no. 5, pp. 1143–1146, 2007. View at Publisher · View at Google Scholar
  120. H. Mothes, C. Melle, G. Ernst, R. Kaufmann, F. Von Eggeling, and U. Settmacher, “Human Neutrophil Peptides 1-3—early markers in development of colorectal adenomas and carcinomas,” Disease Markers, vol. 25, no. 2, pp. 123–129, 2008. View at Google Scholar · View at Scopus
  121. J. Albrethsen, R. Bøgebo, S. Gammeltoft, J. Olsen, B. Winther, and H. Raskov, “Upregulated expression of human neutrophil peptides 1,2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study,” BMC Cancer, vol. 5, article 8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  122. C. Melle, G. Ernst, B. Schimmel et al., “Discovery and identification of α-defensins as low abundant, tumor-derived serum markers in colorectal cancer,” Gastroenterology, vol. 129, no. 1, pp. 66–73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. L. Sorokin, “The impact of the extracellular matrix on inflammation,” Nature Reviews Immunology, vol. 10, no. 10, pp. 712–723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. H. Ohtani, “Stromal reaction in cancer tissue: pathophysiologic significance of the expression of matrix-degrading enzymes in relation to matrix turnover and immune/inflammatory reactions,” Pathology International, vol. 48, no. 1, pp. 1–9, 1998. View at Google Scholar · View at Scopus
  125. D. L. Worthley, A. S. Giraud, and T. C. Wang, “The extracellular matrix in digestive cancer,” Cancer Microenvironment, vol. 3, no. 1, pp. 177–185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. G. I. Abelev and N. L. Lazarevich, “Control of differentiation in progression of epithelial tumors,” Advances in Cancer Research, vol. 95, pp. 61–113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. S. H. Kim, J. Turnbull, and S. Guimond, “Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor,” Journal of Endocrinology, vol. 209, no. 2, pp. 139–151, 2011. View at Publisher · View at Google Scholar
  128. S. Groos, G. Hünefeld, and L. Luciano, “Epithelial cell turnover–extracellular matrix relationship in the small intestine of human adults,” Italian Journal of Anatomy and Embryology, vol. 106, no. 2, pp. 353–361, 2001. View at Google Scholar · View at Scopus
  129. P. Simon-Assmann, M. Kedinger, and K. Haffen, “Immunocytochemical localization of extracellular-matrix proteins in relation to rat intestinal morphogenesis,” Differentiation, vol. 32, no. 1, pp. 59–66, 1986. View at Google Scholar
  130. D. Gagné, J. F. Groulx, Y. D. Benoit et al., “Integrin-linked kinase regulates migration and proliferation of human intestinal cells under a fibronectin-dependent mechanism,” Journal of Cellular Physiology, vol. 222, no. 2, pp. 387–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. S. Westcarr, P. Farshori, J. Wyche, and W. A. Anderson, “Apoptosis and differentiation in the crypt-villus unit of the rat small intestine,” Journal of Submicroscopic Cytology and Pathology, vol. 31, no. 1, pp. 15–30, 1999. View at Google Scholar · View at Scopus
  132. P. H. Vachon, A. Simoneau, F. E. Herring-Gillam, and J. F. Beaulieu, “Cellular fibronectin expression is down-regulated at the mRNA level in differentiating human intestinal epithelial cells,” Experimental Cell Research, vol. 216, no. 1, pp. 30–34, 1995. View at Publisher · View at Google Scholar · View at Scopus
  133. A. M. DeGiorgio-Miller, L. J. Treharne, R. J. McAnulty, P. D. Coleridge Smith, G. J. Laurent, and S. E. Herrick, “Procollagen type I gene expression and cell proliferation are increased in lipodermatosclerosis,” British Journal of Dermatology, vol. 152, no. 2, pp. 242–249, 2005. View at Publisher · View at Google Scholar
  134. D. Gradl, M. Kühl, and D. Wedlich, “The Wnt/Wg signal transducer β-catenin controls fibronectin expression,” Molecular and Cellular Biology, vol. 19, no. 8, pp. 5576–5587, 1999. View at Google Scholar · View at Scopus
  135. H. Takayasu, H. Horie, E. Hiyama et al., “Frequent deletions and mutations of the β-catenin gene are associated with overexpression of cyclin D1 and fibronectin and poorly differentiated histology in childhood hepatoblastoma,” Clinical Cancer Research, vol. 7, no. 4, pp. 901–908, 2001. View at Google Scholar · View at Scopus
  136. V. L. Kolachala, R. Bajaj, L. Wang et al., “Epithelial-derived fibronectin expression, signaling, and function in intestinal inflammation,” Journal of Biological Chemistry, vol. 282, no. 45, pp. 32965–32973, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. B. Walia, F. E. Castaneda, L. Wang et al., “Polarized fibronectin secretion induced by adenosine regulates bacterial-epithelial interaction in human intestinal epithelial cells,” Biochemical Journal, vol. 382, no. 2, pp. 589–596, 2004. View at Publisher · View at Google Scholar · View at Scopus
  138. L. L. Graham, T. Friel, and R. L. Woodman, “Fibronectin enhances Campylobacter fetus interaction with extracellular matrix components and INT 407 cells,” Canadian Journal of Microbiology, vol. 54, no. 1, pp. 37–47, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. R. Isenmann, M. Schwarz, E. Rozdzinski et al., “Interaction of fibronectin and aggregation substance promotes adherence of Enterococcus faecalis to human colon,” Digestive Diseases and Sciences, vol. 47, no. 2, pp. 462–468, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. M. E. Konkel, J. E. Christensen, A. M. Keech, M. R. Monteville, J. D. Klena, and S. G. Garvis, “Identification of a fibronectin-binding domain within the Campylobacter jejuni CadF protein,” Molecular Microbiology, vol. 57, no. 4, pp. 1022–1035, 2005. View at Publisher · View at Google Scholar · View at Scopus
  141. P. Jaluria, K. Konstantopoulos, M. Betenbaugh, and J. Shiloach, “A perspective on microarrays: current applications, pitfalls, and potential uses,” Microbial Cell Factories, vol. 6, article 4, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. J. Terzić, S. Grivennikov, E. Karin, and M. Karin, “Inflammation and colon cancer,” Gastroenterology, vol. 138, no. 6, pp. 2101–2114.e5, 2010. View at Publisher · View at Google Scholar
  143. J. E. Klaunig, Z. Wang, X. Pu, and S. Zhou, “Oxidative stress and oxidative damage in chemical carcinogenesis,” Toxicology and Applied Pharmacology, vol. 254, no. 2, pp. 86–99, 2011. View at Publisher · View at Google Scholar
  144. L. B. Meira, J. M. Bugni, S. L. Green et al., “DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice,” Journal of Clinical Investigation, vol. 118, no. 7, pp. 2516–2525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  145. F. V. N. Din, E. Theodoratou, S. M. Farrington et al., “Effect of aspirin and NSAIDs on risk and survival from colorectal cancer,” Gut, vol. 59, no. 12, pp. 1670–1679, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. R. E. Harris, “Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung,” Inflammopharmacology, vol. 17, no. 2, pp. 55–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. A. M. Abulafi and N. S. Williams, “Local recurrence of colorectal cancer: the problem, mechanisms, management and adjuvant therapy,” British Journal of Surgery, vol. 81, no. 1, pp. 7–19, 1994. View at Google Scholar · View at Scopus
  148. T. Ushijima, “Epigenetic field for cancerization,” Journal of Biochemistry and Molecular Biology, vol. 40, no. 2, pp. 142–150, 2007. View at Google Scholar · View at Scopus
  149. B. J. M. Braakhuis, M. P. Tabor, J. A. Kummer, C. R. Leemans, and R. H. Brakenhoff, “A genetic explanation of slaughter's concept of field cancerization: evidence and clinical implications,” Cancer Research, vol. 63, no. 8, pp. 1727–1730, 2003. View at Google Scholar · View at Scopus