Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2012, Article ID 632548, 16 pages
http://dx.doi.org/10.1155/2012/632548
Review Article

Fetal Programming of Body Composition, Obesity, and Metabolic Function: The Role of Intrauterine Stress and Stress Biology

1Department of Pediatrics, School of Medicine, University of California, Irvine, CA 92697-4260, USA
2UC Irvine Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, CA 92697-4260, USA
3Department of Obstetrics & Gynecology, School of Medicine, University of California, Irvine, CA 92697-4260, USA
4Department of Psychiatry & Human Behavior, School of Medicine, University of California, Irvine, CA 92697-4260, USA
5Department of Epidemiology, School of Medicine, University of California, Irvine, CA 92697-4260, USA

Received 1 January 2012; Accepted 21 February 2012

Academic Editor: Barbara Alexander

Copyright © 2012 Sonja Entringer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. D. Gluckman and M. A. Hanson, “Living with the past: evolution, development, and patterns of disease,” Science, vol. 305, no. 5691, pp. 1733–1736, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. C. Langley-Evans and S. McMullen, “Developmental origins of adult disease,” Medical Principles and Practice, vol. 19, no. 2, pp. 87–98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. J. Holness, M. L. Langdown, and M. C. Sugden, “Early-life programming of susceptibility to dysregulation of glucose metabolism and the development of type 2 diabetes mellitus,” Biochemical Journal, vol. 349, no. 3, pp. 657–665, 2000. View at Google Scholar · View at Scopus
  4. I. C. McMillen and J. S. Robinson, “Developmental origins of the metabolic syndrome: prediction, plasticity, and programming,” Physiological Reviews, vol. 85, no. 2, pp. 571–633, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. C. E. Bertram and M. A. Hanson, “Animal models and programming of the metabolic syndrome,” British Medical Bulletin, vol. 60, pp. 103–121, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Hanson, K. M. Godfrey, K. A. Lillycrop, G. C. Burdge, and P. D. Gluckman, “Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations and epigenetic mechanisms,” Progress in Biophysics and Molecular Biology, vol. 106, no. 1, pp. 272–280, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. P. D. Wadhwa, S. Entringer, C. Buss, and M. C. Lu, “The contribution of maternal stress to preterm birth: issues and considerations,” Clinics in Perinatology, vol. 38, no. 3, pp. 351–384, 2011. View at Publisher · View at Google Scholar
  8. P. D. Wadhwa, “Psychoneuroendocrine processes in human pregnancy influence fetal development and health,” Psychoneuroendocrinology, vol. 30, no. 8, pp. 724–743, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. C. L. Giscombé and M. Lobel, “Explaining disproportionately high rates of adverse birth outcomes among African Americans: the impact of stress, racism, and related factors in pregnancy,” Psychological Bulletin, vol. 131, no. 5, pp. 662–683, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. G. A. McGrady, J. F. C. Sung, D. L. Rowley, and C. J. R. Hogue, “Preterm delivery and low birth weight among first-born infants of black and white college graduates,” American Journal of Epidemiology, vol. 136, no. 3, pp. 266–276, 1992. View at Google Scholar · View at Scopus
  11. K. C. Schoendorf, C. J. R. Hogue, J. C. Kleinman, and D. Rowley, “Mortality among infants of black as compared with white college-educated parents,” New England Journal of Medicine, vol. 326, no. 23, pp. 1522–1526, 1992. View at Google Scholar · View at Scopus
  12. S. J. Ventura, J. A. Martin, S. C. Curtin, T. J. Mathews, and M. M. Park, “Births: final data for 1998,” National Vital Statistics Reports, vol. 48, no. 3, pp. 1–100, 2000. View at Google Scholar · View at Scopus
  13. P. D. Wadhwa, J. F. Culhane, V. Rauh et al., “Stress, infection and preterm birth: a biobehavioural perspective,” Paediatric and Perinatal Epidemiology, vol. 15, no. 2, pp. 17–29, 2001. View at Google Scholar · View at Scopus
  14. J. S. Dyer and C. R. Rosenfeld, “Metabolic imprinting by prenatal, perinatal, and postnatal overnutrition: a review,” Seminars in Reproductive Medicine, vol. 29, no. 3, pp. 266–276, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Nuyt and B. T. Alexander, “Developmental programming and hypertension,” Current Opinion in Nephrology and Hypertension, vol. 18, no. 2, pp. 144–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. K. N. Laland, K. Sterelny, J. Odling-Smee, W. Hoppitt, and T. Uller, “Cause and effect in biology revisited: is Mayr's proximate-ultimate dichotomy still useful?” Science, vol. 334, no. 6062, pp. 1512–1516, 2011. View at Publisher · View at Google Scholar
  17. F. H. Bloomfield, M. H. Oliver, P. Hawkins et al., “Periconceptional undernutrition in sheep accelerates maturation of the fetal hypothalamic-pituitary-adrenal axis in late gestation,” Endocrinology, vol. 145, no. 9, pp. 4278–4285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. S. E. Chadio, B. Kotsampasi, G. Papadomichelakis et al., “Impact of maternal undernutrition in the hypothalamic-pituitary-adrenal axis responsiveness in sheep at different ages postnatal,” Journal of Endocrinology, vol. 192, no. 3, pp. 495–503, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Bispham, G. S. Gopalakrishnan, J. Dandrea et al., “Maternal endocrine adaptation throughout pregnancy to nutritional manipulation: consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development,” Endocrinology, vol. 144, no. 8, pp. 3575–3585, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. S. P. Ford, L. Zhang, M. Zhu et al., “Maternal obesity accelerates fetal pancreatic β-cell but not α-cell development in sheep: prenatal consequences,” American Journal of Physiology, vol. 297, no. 3, pp. R835–R843, 2009. View at Publisher · View at Google Scholar
  21. R. Lingas, F. Dean, and S. G. Matthews, “Maternal nutrient restriction (48 h) modifies brain corticosteroid receptor expression and endocrine function in the fetal guinea pig,” Brain Research, vol. 846, no. 2, pp. 236–242, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. C. M. Dwyer and N. C. Stickland, “The effects of maternal undernutrition on maternal and fetal serum insulin-like growth factors, thyroid hormones and cortisol in the guinea pig,” Journal of Developmental Physiology, vol. 18, no. 6, pp. 303–313, 1992. View at Google Scholar · View at Scopus
  23. Q. Shen, Z. Q. Li, Y. Sun et al., “The role of pro-inflammatory factors in mediating the effects on the fetus of prenatal undernutrition: implications for schizophrenia,” Schizophrenia Research, vol. 99, no. 1–3, pp. 48–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. K. L. K. Tamashiro, C. E. Terrillion, J. Hyun, J. I. Koenig, and T. H. Moran, “Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring,” Diabetes, vol. 58, no. 5, pp. 1116–1125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Gonzalez-Bono, N. Rohleder, D. H. Hellhammer, A. Salvador, and C. Kirschbaum, “Glucose but not protein or fat load amplifies the cortisol response to psychosocial stress,” Hormones and Behavior, vol. 41, no. 3, pp. 328–333, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Epel, R. Lapidus, B. McEwen, and K. Brownell, “Stress may add bite to appetite in women: a laboratory study of stress-induced cortisol and eating behavior,” Psychoneuroendocrinology, vol. 26, no. 1, pp. 37–49, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Hitze, C. Hubold, R. van Dyken, K. Schlichting, H. Lehnert, and S. Entringer, “How the selfish brain organizes its supply and demand,” Frontiers in Neuroenergetics, vol. 2, p. 7, 2010. View at Google Scholar
  28. S. A. George, S. Khan, H. Briggs, and J. L. Abelson, “CRH-stimulated cortisol release and food intake in healthy, non-obese adults,” Psychoneuroendocrinology, vol. 35, no. 4, pp. 607–612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. P. A. Tataranni, D. E. Larson, S. Snitker, J. B. Young, J. P. Flatt, and E. Ravussin, “Effects of glucocorticoids on energy metabolism and food intake in humans,” American Journal of Physiology, vol. 271, no. 2, pp. E317–E325, 1996. View at Google Scholar · View at Scopus
  30. S. E. La Fleur, S. F. Akana, S. L. Manalo, and M. F. Dallman, “Interaction between corticosterone and insulin in obesity: regulation of lard intake and fat stores,” Endocrinology, vol. 145, no. 5, pp. 2174–2185, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. J. P. Chaput, J. P. Després, C. Bouchard, and A. Tremblay, “The association between sleep duration and weight gain in adults: a 6-year prospective study from the Quebec Family Study,” Sleep, vol. 31, no. 4, pp. 517–523, 2008. View at Google Scholar · View at Scopus
  32. M. F. Dallman, S. E. La Fleur, N. C. Pecoraro, F. Gomez, H. Houshyar, and S. F. Akana, “Minireview: glucocorticoids—food intake, abdominal obesity, and wealthy nations in 2004,” Endocrinology, vol. 145, no. 6, pp. 2633–2638, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. A. M. Strack, R. J. Sebastian, M. W. Schwartz, and M. F. Dallman, “Glucocorticoids and insulin: reciprocal signals for energy balance,” American Journal of Physiology, vol. 268, no. 1, pp. R142–R149, 1995. View at Google Scholar · View at Scopus
  34. P. Björntorp, “The regulation of adipose tissue distribution in humans,” International Journal of Obesity, vol. 20, no. 4, pp. 291–302, 1996. View at Google Scholar
  35. E. S. Epel, “Psychological and metabolic stress: a recipe for accelerated cellular aging?” Hormones, vol. 8, no. 1, pp. 7–22, 2009. View at Google Scholar · View at Scopus
  36. A. Peters, “The selfish brain: competition for energy resources,” American Journal of Human Biology, vol. 23, no. 1, pp. 29–34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. K. M. Hurley, L. E. Caulfield, L. M. Sacco, K. A. Costigan, and J. A. Dipietro, “Psychosocial influences in dietary patterns during pregnancy,” Journal of the American Dietetic Association, vol. 105, no. 6, pp. 963–966, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. S. Han, E. H. Ha, H. S. Park, Y. J. Kim, and S. S. Lee, “Relationships between pregnancy outcomes, biochemical markers and pre-pregnancy body mass index,” International Journal of Obesity, vol. 35, pp. 570–577, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. A. M. Samuelsson, A. Morris, N. Igosheva et al., “Evidence for sympathetic origins of hypertension in juvenile offspring of obese rats,” Hypertension, vol. 55, no. 1, pp. 76–82, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Entringer, C. Buss, and P. D. Wadhwa, “Prenatal stress and developmental programming of human health and disease risk: concepts and integration of empirical findings,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 17, no. 6, pp. 507–516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. J. E. Merrill, “Tumor necrosis factor alpha, interleukin 1 and related cytokines in brain development: normal and pathological,” Developmental Neuroscience, vol. 14, no. 1, pp. 1–10, 1992. View at Google Scholar · View at Scopus
  42. S. G. Matthews, “Antenatal glucocorticoids and programming of the developing CNS,” Pediatric Research, vol. 47, no. 3, pp. 291–300, 2000. View at Google Scholar · View at Scopus
  43. B. Zhao and J. P. Schwartz, “Involvement of cytokines in normal CNS development and neurological diseases: recent progress and perspectives,” Journal of Neuroscience Research, vol. 52, no. 1, pp. 7–16, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. J. L. Trejo, I. Cuchillo, C. Machín, and C. Rúa, “Maternal adrenalectomy at the early onset of gestation impairs the postnatal development of the rat hippocampal formation: effects on cell numbers and differentiation, connectivity and Calbindin-D28k immunoreactivity,” Journal of Neuroscience Research, vol. 62, no. 5, pp. 644–667, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. M. R. Garbrecht, J. M. Klein, T. J. Schmidt, and J. M. Snyder, “Glucocorticoid metabolism in the human fetal lung: implications for lung development and the pulmonary surfactant system,” Biology of the Neonate, vol. 89, no. 2, pp. 109–119, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. T. J. Cole, J. A. Blendy, A. P. Monaghan et al., “Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation,” Genes and Development, vol. 9, no. 13, pp. 1608–1621, 1995. View at Google Scholar · View at Scopus
  47. “Maternal-fetal medicine: principles and practice,” in Endocrinology of Pregnancy, R. K. Creasy and R. Resnick, Eds., W. B. Saunders, Philadelphia, Pa, USA, 1994.
  48. A. Harris and J. Seckl, “Glucocorticoids, prenatal stress and the programming of disease,” Hormones and Behavior, vol. 59, no. 3, pp. 279–289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. H. Cheng, R. C. Nicholson, B. King, E. C. Chan, J. T. Fitter, and R. Smith, “Corticotropin-releasing hormone gene expression in primary placental cells is modulated by cyclic adenosine 3′,5′-monophosphate,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 3, pp. 1239–1244, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. P. J. Lowry, “Corticotropin-releasing factor and its binding protein in human plasma,” in Proceedings of the Ciba Foundation Symposium, vol. 172, pp. 108–115, 1993.
  51. A. P. Weetman, “Immunity, thyroid function and pregnancy: molecular mechanisms,” Nature Reviews Endocrinology, vol. 6, no. 6, pp. 311–318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Romero, R. Gomez, F. Ghezzi et al., “A fetal systemic inflammatory response is followed by the spontaneous onset of preterm parturition,” American Journal of Obstetrics and Gynecology, vol. 179, no. 1, pp. 186–193, 1998. View at Google Scholar · View at Scopus
  53. N. Athayde, S. S. Edwin, R. Romero et al., “A role for matrix metalloproteinase-9 in spontaneous rupture of the fetal membranes,” American Journal of Obstetrics and Gynecology, vol. 179, no. 5, pp. 1248–1253, 1998. View at Google Scholar · View at Scopus
  54. B. H. Yoon, R. Romero, J. K. Jun et al., “An increase in fetal plasma cortisol but not dehydroepiandrosterone sulfate is followed by the onset of preterm labor in patients with preterm premature rupture of the membranes,” American Journal of Obstetrics and Gynecology, vol. 179, no. 5, pp. 1107–1114, 1998. View at Google Scholar · View at Scopus
  55. G. P. Chrousos, “Stressors, stress, and neuroendocrine integration of the adaptive response the 1997 hans selye memorial lecture,” Annals of the New York Academy of Sciences, vol. 851, pp. 311–335, 1998. View at Google Scholar · View at Scopus
  56. J. J. Haddad, N. E. Saadé, and B. Safieh-Garabedian, “Cytokines and neuro-immune-endocrine interactions: a role for the hypothalamic-pituitary-adrenal revolving axis,” Journal of Neuroimmunology, vol. 133, no. 1-2, pp. 1–19, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. B. S. McEwen, C. A. Biron, K. W. Brunson et al., “The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions,” Brain Research Reviews, vol. 23, no. 1-2, pp. 79–133, 1997. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Tsigos and G. Chrousos, “Stress, endocrine manifestations and diseases,” in Handbook of Stress Medicine, C. Cooper, Ed., CRC Press, Boca Raton, Fla, USA, 1995. View at Google Scholar
  59. V. L. Clifton, E. M. Wallace, and R. Smith, “Short-term effects of glucocorticoids in the human fetal-placental circulation in vitro,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 6, pp. 2838–2842, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. G. P. Chrousos and P. W. Gold, “The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis,” Journal of the American Medical Association, vol. 267, no. 9, pp. 1244–1252, 1992. View at Publisher · View at Google Scholar · View at Scopus
  61. I. J. Elenkov and G. P. Chrousos, “Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease,” Trends in Endocrinology and Metabolism, vol. 10, no. 9, pp. 359–368, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. P. D. Wadhwa, C. Dunkel-Schetter, A. Chicz-Demet, M. Porto, and C. A. Sandman, “Prenatal psychosocial factors and the neuroendocrine axis in human pregnancy,” Psychosomatic Medicine, vol. 58, no. 5, pp. 432–446, 1996. View at Google Scholar · View at Scopus
  63. S. Entringer, C. Buss, E. A. Shirtcliff et al., “Attenuation of maternal psychophysiological stress responses and the maternal cortisol awakening response over the course of human pregnancy,” Stress, vol. 13, no. 3, pp. 258–268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Buss, S. Entringer, J. F. Reyes et al., “The maternal cortisol awakening response in human pregnancy is associated with the length of gestation,” American Journal of Obstetrics and Gynecology, vol. 201, no. 4, pp. 398.e1–398.e8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. M. E. Coussons-Read, M. L. Okun, M. P. Schmitt, and S. Giese, “Prenatal stress alters cytokine levels in a manner that may endanger human pregnancy,” Psychosomatic Medicine, vol. 67, no. 4, pp. 625–631, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. L. M. Christian, A. Franco, R. Glaser, and J. D. Iams, “Depressive symptoms are associated with elevated serum proinflammatory cytokines among pregnant women,” Brain, Behavior, and Immunity, vol. 23, no. 6, pp. 750–754, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. F. Petraglia, L. Calza, G. C. Caruti, L. Giardino, B. M. De Ramundo, and S. Angioni, “New aspects of placental endocrinology,” Journal of Endocrinological Investigation, vol. 13, no. 4, pp. 353–371, 1990. View at Google Scholar
  68. F. Petraglia, P. E. Sawchenko, J. Rivier, and W. Vale, “Evidence for local stimulation of ACTH secretion by corticotropin-releasing factor in human placenta,” Nature, vol. 328, no. 6132, pp. 717–719, 1987. View at Google Scholar · View at Scopus
  69. F. Petraglia, S. Sutton, and W. Vale, “Neurotransmitters and peptides modulate the release of immunoreactive corticotropin-releasing factor from cultured human placental cells,” American Journal of Obstetrics and Gynecology, vol. 160, no. 1, pp. 247–251, 1989. View at Google Scholar · View at Scopus
  70. R. S. Goland, I. M. Comvell, W. B. Warren, and S. L. Wardlaw, “Placental corticotropin-releasing hormone and pituitary-adrenal function during pregnancy,” Neuroendocrinology, vol. 56, no. 5, pp. 742–749, 1992. View at Google Scholar · View at Scopus
  71. E.-C. Chan, R. Smith, T. Lewin et al., “Plasma corticotropin-releasing hormone, β-endorphin and cortisol inter-relationships during human pregnancy,” Acta Endocrinologica, vol. 128, no. 4, pp. 339–344, 1993. View at Google Scholar
  72. P. D. Wadhwa, C. A. Sandman, A. Chicz-deMet, and M. Porto, “Placental CRH modulates maternal pituitary-adrenal function in human pregnancy,” Annals of the New York Academy of Sciences, vol. 814, pp. 276–281, 1997. View at Publisher · View at Google Scholar · View at Scopus
  73. P. Florio, A. Imperatore, F. Sanseverino et al., “The measurement of maternal plasma corticotropin-releasing factor (CRF) and CRF-binding protein improves the early prediction of preeclampsia,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 9, pp. 4673–4677, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. E. K. O. Ng, T. N. Leung, N. B. Y. Tsui et al., “The concentration of circulating corticotropin-releasing hormone mRNA in maternal plasma is increased in preeclampsia,” Clinical Chemistry, vol. 49, no. 5, pp. 727–731, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Florio, R. Romero, T. Chaiworapongsa et al., “Amniotic fluid and umbilical cord plasma corticotropin-releasing factor (CRF), CRF-binding protein, adrenocorticotropin, and cortisol concentrations in intraamniotic infection and inflammation at term,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 9, pp. 3604–3609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. P. Florio, M. C. Zatelli, F. M. Reis, E. C. Degli Uberti, and F. Petraglia, “Corticotropin releasing hormone: a diagnostic marker for behavioral and reproductive disorders?” Frontiers in Bioscience, vol. 12, no. 2, pp. 551–560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. F. Petraglia, L. Aguzzoli, P. Florio et al., “Maternal plasma and placental immunoreactive corticotrophin-releasing factor concentrations in infection-associated term and pre-term delivery,” Placenta, vol. 16, no. 2, pp. 157–164, 1995. View at Publisher · View at Google Scholar · View at Scopus
  78. T. Stallmach, G. Hebisch, H. Joller, P. Kolditz, and M. Engelmann, “Expression pattern of cytokines in the different compartments of the feto-maternal unit under various conditions,” Reproduction, Fertility and Development, vol. 7, no. 6, pp. 1573–1580, 1995. View at Publisher · View at Google Scholar · View at Scopus
  79. E. W. Harville, D. A. Savitz, N. Dole, A. H. Herring, J. M. Thorp, and K. C. Light, “Stress and placental resistance measured by Doppler ultrasound in early and mid-pregnancy,” Ultrasound in Obstetrics and Gynecology, vol. 32, no. 1, pp. 23–30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. B. D. LaMarca, M. J. Ryan, J. S. Gilbert, S. R. Murphy, and J. P. Granger, “Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia,” Current Hypertension Reports, vol. 9, no. 6, pp. 480–485, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. A. A. Varvarigou, M. Petsali, P. Vassilakos, and N. G. Beratis, “Increased cortisol concentrations in the cord blood of newborns whose mothers smoked during pregnancy,” Journal of Perinatal Medicine, vol. 34, no. 6, pp. 466–470, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Paul, D. Boutain, K. Agnew, J. Thomas, and J. Hitti, “The relationship between racial identity, income, stress and C-reactive protein among parous women: implications for preterm birth disparity research,” Journal of the National Medical Association, vol. 100, no. 5, pp. 540–546, 2008. View at Google Scholar · View at Scopus
  83. N. Halfon and P. W. Newacheck, “Evolving notions of childhood chronic illness,” Journal of the American Medical Association, vol. 303, no. 7, pp. 665–666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Van Cleave, S. L. Gortmaker, and J. M. Perrin, “Dynamics of obesity and chronic health conditions among children and youth,” Journal of the American Medical Association, vol. 303, no. 7, pp. 623–630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. C. L. Coe, G. R. Lubach, and E. A. Shirtcliff, “Maternal stress during pregnancy predisposes for iron deficiency in infant monkeys impacting innate immunity,” Pediatric Research, vol. 61, no. 5, pp. 520–524, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. M. T. Bailey, G. R. Lubach, and C. L. Coe, “Prenatal stress alters bacterial colonization of the gut in infant monkeys,” Journal of Pediatric Gastroenterology and Nutrition, vol. 38, no. 4, pp. 414–421, 2004. View at Google Scholar · View at Scopus
  87. C. L. Coe, G. R. Lulbach, and M. L. Schneider, “Prenatal disturbance alters the size of the corpus callosum in young monkeys,” Developmental Psychobiology, vol. 41, no. 2, pp. 178–185, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. C. L. Coe, G. R. Lubach, and J. W. Karaszewski, “Prenatal stress and immune recognition of self and nonself in the primate neonate,” Biology of the Neonate, vol. 76, no. 5, pp. 301–310, 1999. View at Publisher · View at Google Scholar · View at Scopus
  89. R. E. Bowman, N. J. Maclusky, Y. Sarmiento, M. Frankfurt, M. Gordon, and V. N. Luine, “Sexually dimorphic effects of prenatal stress on cognition, hormonal responses, and central neurotransmitters,” Endocrinology, vol. 145, no. 8, pp. 3778–3787, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Entringer, S. Wüst, R. Kumsta et al., “Prenatal psychosocial stress exposure is associated with insulin resistance in young adults,” American Journal of Obstetrics and Gynecology, vol. 199, no. 5, pp. 498.e1–498.e7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Entringer, R. Kumsta, D. H. Hellhammer, P. D. Wadhwa, and S. Wüst, “Prenatal exposure to maternal psychosocial stress and HPA axis regulation in young adults,” Hormones and Behavior, vol. 55, no. 2, pp. 292–298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Entringer, R. Kumsta, E. L. Nelson, D. H. Hellhammer, P. D. Wadhwa, and S. Wüst, “Influence of prenatal psychosocial stress on cytokine production in adult women,” Developmental Psychobiology, vol. 50, no. 6, pp. 579–587, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Entringer, C. Buss, R. Kumsta, D. H. Hellhammer, P. D. Wadhwa, and S. Wüst, “Prenatal psychosocial stress exposure is associated with subsequent working memory performance in young women,” Behavioral Neuroscience, vol. 123, no. 4, pp. 886–893, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Entringer, E. S. Epel, R. Kumsta et al., “Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 33, pp. E513–E518, 2011. View at Publisher · View at Google Scholar
  95. C. Heim, D. J. Newport, S. Heit et al., “Pituitary-adrenal and automatic responses to stress in women after sexual and physical abuse in childhood,” Journal of the American Medical Association, vol. 284, no. 5, pp. 592–597, 2000. View at Google Scholar · View at Scopus
  96. M. L. Mietus-Snyder and R. H. Lustig, “Childhood obesity: adrift in the “limbic triangle”,” Annual Review of Medicine, vol. 59, pp. 147–162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Alonso-Alonso and A. Pascual-Leone, “The right brain hypothesis for obesity,” Journal of the American Medical Association, vol. 297, no. 16, pp. 1819–1822, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. C. Buss, E. P. Davis, L. T. Muftuler, K. Head, and C. A. Sandman, “High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6–9-year-old children,” Psychoneuroendocrinology, vol. 35, no. 1, pp. 141–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. J. Li, J. Olsen, M. Vestergaard, C. Obel, J. L. Baker, and T. I. A. Sørensen, “Prenatal stress exposure related to maternal bereavement and risk of childhood overweight,” PLoS One, vol. 5, no. 7, Article ID e11896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. R. Beijers, J. Jansen, M. Riksen-Walraven, and C. De Weerth, “Maternal prenatal anxiety and stress predict infant illnesses and health complaints,” Pediatrics, vol. 126, no. 2, pp. e401–e409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. N. F. Butte, E. Christiansen, and T. I. A. Sørensen, “Energy imbalance underlying the development of childhood obesity,” Obesity, vol. 15, no. 12, pp. 3056–3066, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. B. Muhlhausler and S. R. Smith, “Early-life origins of metabolic dysfunction: role of the adipocyte,” Trends in Endocrinology and Metabolism, vol. 20, no. 2, pp. 51–57, 2009. View at Publisher · View at Google Scholar
  103. P. Sumithran, L. A. Prendergast, E. Delbridge et al., “Long-term persistence of hormonal adaptations to weight loss,” New England Journal of Medicine, vol. 365, no. 17, pp. 1597–1604, 2011. View at Publisher · View at Google Scholar
  104. P. D. Wadhwa, T. J. Garite, M. Porto et al., “Placental corticotropin-releasing hormone (CRH), spontaneous preterm birth, and fetal growth restriction: a prospective investigation,” American Journal of Obstetrics and Gynecology, vol. 191, no. 4, pp. 1063–1069, 2004. View at Publisher · View at Google Scholar
  105. O. A. Kensara, S. A. Wootton, D. I. Phillips, M. Patel, A. A. Jackson, and M. Elia, “Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen,” American Journal of Clinical Nutrition, vol. 82, no. 5, pp. 980–987, 2005. View at Google Scholar · View at Scopus
  106. L. Ibáñez, L. Suárez, A. Lopez-Bermejo, M. Díaz, C. Valls, and F. De Zegher, “Early development of visceral fat excess after spontaneous catch-up growth in children with low birth weight,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 3, pp. 925–928, 2008. View at Publisher · View at Google Scholar
  107. L. Ibáñez, K. Ong, D. B. Dunger, and F. De Zegher, “Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 6, pp. 2153–2158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. M. W. Gillman, J. W. Rich-Edwards, S. Huh et al., “Maternal corticotropin-releasing hormone levels during pregnancy and offspring adiposity,” Obesity, vol. 14, no. 9, pp. 1647–1653, 2006. View at Publisher · View at Google Scholar
  109. M. H. Fasting, E. Oken, C. S. Mantzoros et al., “Maternal levels of corticotropin-releasing hormone during pregnancy in relation to adiponectin and leptin in early childhood,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 4, pp. 1409–1415, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. T. Radaelli, J. Uvena-Celebrezze, J. Minium, L. Huston-Presley, P. Catalano, and S. Hauguel-de Mouzon, “Maternal interleukin-6: marker of fetal growth and adiposity,” Journal of the Society for Gynecologic Investigation, vol. 13, no. 1, pp. 53–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. B. R. Mueller and T. L. Bale, “Impact of prenatal stress on long term body weight is dependent on timing and maternal sensitivity,” Physiology and Behavior, vol. 88, no. 4-5, pp. 605–614, 2006. View at Publisher · View at Google Scholar
  112. S. U. Devaskar, “Neurohumoral regulation of body weight gain,” Pediatric Diabetes, vol. 2, no. 3, pp. 131–144, 2001. View at Publisher · View at Google Scholar · View at Scopus
  113. S. G. Bouret, “Early life origins of obesity: role of hypothalamic programming,” Journal of Pediatric Gastroenterology and Nutrition, vol. 48, no. 1, supplement, pp. S31–S38, 2009. View at Publisher · View at Google Scholar
  114. D. Richard, Q. Huang, and E. Timofeeva, “The corticotropin-releasing hormone system in the regulation of energy balance in obesity,” International Journal of Obesity, vol. 24, no. 2, supplement, pp. S36–S39, 2000. View at Google Scholar
  115. A. Leal-Cerro, A. Soto, M. A. Martínez, C. Dieguez, and F. F. Casanueva, “Influence of cortisol status on leptin secretion,” Pituitary, vol. 4, no. 1-2, pp. 111–116, 2001. View at Publisher · View at Google Scholar · View at Scopus
  116. R. J. Martin, G. J. Hausman, and D. B. Hausman, “Regulation of adipose cell development in utero,” Proceedings of the Society for Experimental Biology and Medicine, vol. 219, no. 3, pp. 200–210, 1998. View at Google Scholar · View at Scopus
  117. G. Ailhaud, P. Grimaldi, and R. Négrel, “Cellular and molecular aspects of adipose tissue development,” Annual Review of Nutrition, vol. 12, pp. 207–233, 1992. View at Google Scholar · View at Scopus
  118. K. L. Spalding, E. Arner, P. O. Westermark et al., “Dynamics of fat cell turnover in humans,” Nature, vol. 453, no. 7196, pp. 783–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. H. Hauner, P. Schmid, and E. F. Pfeiffer, “Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells,” Journal of Clinical Endocrinology and Metabolism, vol. 64, no. 4, pp. 832–835, 1987. View at Google Scholar · View at Scopus
  120. J. E. Campbell, A. J. Peckett, A. M. D'Souza, T. J. Hawke, and M. C. Riddell, “Adipogenic and lipolytic effects of chronic glucocorticoid exposure,” American Journal of Physiology, vol. 300, no. 1, pp. C198–C209, 2011. View at Publisher · View at Google Scholar
  121. A. J. Vidal-Puig, R. V. Considine, M. Jimenez-Liñan et al., “Peroxisome proliferator-activated receptor gene expression in human tissues: effects of obesity, weight loss, and regulation by insulin and glucocorticoids,” Journal of Clinical Investigation, vol. 99, no. 10, pp. 2416–2422, 1997. View at Google Scholar · View at Scopus
  122. D. Grammatopoulos, “The family of corticotropin-releasing hormone (CRH) peptides: important regulators of adipocyte function,” Endocrine Abstracts, vol. 16, no. S19, p. 1, 2008. View at Google Scholar
  123. S. W. Coppack, “Pro-inflammatory cytokines and adipose tissue,” Proceedings of the Nutrition Society, vol. 60, no. 3, pp. 349–356, 2001. View at Google Scholar · View at Scopus
  124. J. Dahlgren, C. Nilsson, E. Jennische et al., “Prenatal cytokine exposure results in obesity and gender-specific programming,” American Journal of Physiology, vol. 281, no. 2, pp. E326–E334, 2001. View at Google Scholar
  125. B. S. Muhlhausler, C. L. Adam, P. A. Findlay, J. A. Duffield, and I. C. McMillen, “Increased maternal nutrition alters development of the appetite-regulating network in the brain,” The FASEB Journal, vol. 20, no. 8, pp. 1257–1259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. B. S. Muhlhausler, J. A. Duffield, and I. C. McMillen, “Increased maternal nutrition stimulates peroxisome proliferator activated receptor-γ, adiponectin, and leptin messenger ribonucleic acid expression in adipose tissue before birth,” Endocrinology, vol. 148, no. 2, pp. 878–885, 2007. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Padoan, S. Rigano, E. Ferrazzi, B. L. Beaty, F. C. Battaglia, and H. L. Galan, “Differences in fat and lean mass proportions in normal and growth-restricted fetuses,” American Journal of Obstetrics and Gynecology, vol. 191, no. 4, pp. 1459–1464, 2004. View at Publisher · View at Google Scholar
  128. R. Crescenzo, S. Samec, V. Antic et al., “A role for suppressed thermogenesis favoring catch-up fat in the pathophysiology of catch-up growth,” Diabetes, vol. 52, no. 5, pp. 1090–1097, 2003. View at Publisher · View at Google Scholar · View at Scopus
  129. D. Jaquet, A. Gaboriau, P. Czernichow, and C. Levy-Marchal, “Insulin resistance early in adulthood in subjects born with intrauterine growth retardation,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 4, pp. 1401–1406, 2000. View at Publisher · View at Google Scholar · View at Scopus
  130. M. J. Nyirenda, R. S. Lindsay, C. J. Kenyon, A. Burchell, and J. R. Seckl, “Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring,” Journal of Clinical Investigation, vol. 101, no. 10, pp. 2174–2181, 1998. View at Google Scholar · View at Scopus
  131. K. A. Lillycrop, E. S. Phillips, C. Torrens, M. A. Hanson, A. A. Jackson, and G. C. Burdge, “Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPARα promoter of the offspring,” British Journal of Nutrition, vol. 100, no. 2, pp. 278–282, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. K. A. Lillycrop, J. L. Slater-Jefferies, M. A. Hanson, K. M. Godfrey, A. A. Jackson, and G. C. Burdge, “Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications,” British Journal of Nutrition, vol. 97, no. 6, pp. 1064–1073, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. V. M. Schwitzgebel, E. Somm, and P. Klee, “Modeling intrauterine growth retardation in rodents: impact on pancreas development and glucose homeostasis,” Molecular and Cellular Endocrinology, vol. 304, no. 1-2, pp. 78–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. S. R. Dalziel, N. K. Walker, V. Parag et al., “Cardiovascular risk factors after antenatal exposure to betamethasone: 30-year follow-up of a randomised controlled trial,” Lancet, vol. 365, no. 9474, pp. 1856–1862, 2005. View at Publisher · View at Google Scholar · View at Scopus
  135. P. W. Speiser, M. C. J. Rudolf, H. Anhalt et al., “Consensus statement: childhood obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 3, pp. 1871–1887, 2005. View at Publisher · View at Google Scholar · View at Scopus
  136. S. O'Rahilly and I. S. Farooqi, “Human obesity: a heritable neurobehavioral disorder that is highly sensitive to environmental conditions,” Diabetes, vol. 57, no. 11, pp. 2905–2910, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. K. Clément and P. Ferré, “Genetics and the pathophysiology of obesity,” Pediatric Research, vol. 53, no. 5, pp. 721–725, 2003. View at Publisher · View at Google Scholar
  138. C. L. Ogden, M. D. Carroll, and K. M. Flegal, “High body mass index for age among US children and adolescents, 2003–2006,” Journal of the American Medical Association, vol. 299, no. 20, pp. 2401–2405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. P. D. Wadhwa, C. Buss, S. Entringer, and J. M. Swanson, “Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms,” Seminars in Reproductive Medicine, vol. 27, no. 5, pp. 358–368, 2009. View at Publisher · View at Google Scholar
  140. J. M. Swanson, S. Entringer, C. Buss, and P. D. Wadhwa, “Developmental origins of health and disease: environmental exposures,” Seminars in Reproductive Medicine, vol. 27, no. 5, pp. 391–402, 2009. View at Publisher · View at Google Scholar
  141. K. A. Lillycrop and G. C. Burdge, “Epigenetic changes in early life and future risk of obesity,” International Journal of Obesity, vol. 35, pp. 72–83, 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. G. C. Burdge and K. A. Lillycrop, “Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease,” Annual Review of Nutrition, vol. 30, pp. 315–339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. Z. Hochberg, R. Feil, M. Constancia et al., “Child health, developmental plasticity, and epigenetic programming,” Endocrine Reviews, vol. 32, no. 2, pp. 159–224, 2011. View at Publisher · View at Google Scholar
  144. S. E. Ozanne and M. Constância, “Mechanisms of Disease: the developmental origins of disease and the role of the epigenotype,” Nature Clinical Practice Endocrinology and Metabolism, vol. 3, no. 7, pp. 539–546, 2007. View at Publisher · View at Google Scholar
  145. N. A. Youngson and E. Whitelaw, “Transgenerational epigenetic effects,” Annual Review of Genomics and Human Genetics, vol. 9, pp. 233–257, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. S. C. Langley-Evans, “Developmental programming of health and disease,” Proceedings of the Nutrition Society, vol. 65, no. 1, pp. 97–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  147. A. Gabory, L. Attig, and C. Junien, “Epigenetic mechanisms involved in developmental nutritional programming,” World Journal of Diabetes, vol. 2, no. 10, pp. 164–175, 2011. View at Google Scholar
  148. A. L. Fowden and A. J. Forhead, “Hormones as epigenetic signals in developmental programming,” Experimental Physiology, vol. 94, no. 6, pp. 607–625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  149. P. G. Voorhoeve, E. L. T. Van Den Akker, E. F. C. Van Rossum et al., “Glucocorticoid receptor gene variant is associated with increased body fatness in youngsters,” Clinical Endocrinology, vol. 71, no. 4, pp. 518–523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  150. R. Kumsta, S. Entringer, J. W. Koper, E. F. C. van Rossum, D. H. Hellhammer, and S. Wüst, “Sex specific associations between common glucocorticoid receptor gene variants and hypothalamus-pituitary-adrenal axis responses to psychosocial stress,” Biological Psychiatry, vol. 62, no. 8, pp. 863–869, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. I. C. G. Weaver, N. Cervoni, F. A. Champagne et al., “Epigenetic programming by maternal behavior,” Nature Neuroscience, vol. 7, no. 8, pp. 847–854, 2004. View at Publisher · View at Google Scholar · View at Scopus
  152. J. Derringer, R. F. Krueger, D. M. Dick et al., “Predicting sensation seeking from dopamine genes: a candidate-system approach,” Psychological Science, vol. 21, no. 9, pp. 1282–1290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. A. Hamidovic, A. Dlugos, A. Skol, A. A. Palmer, and H. D. Wit, “Evaluation of genetic variability in the dopamine receptor D2 in relation to behavioral inhibition and impulsivity/sensation seeking: an exploratory study with d-amphetamine in healthy participants,” Experimental and Clinical Psychopharmacology, vol. 17, no. 6, pp. 374–383, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. W. Adriani, F. Boyer, L. Gioiosa, S. Macrì, J. L. Dreyer, and G. Laviola, “Increased impulsive behavior and risk proneness following lentivirus-mediated dopamine transporter over-expression in rats' nucleus accumbens,” Neuroscience, vol. 159, no. 1, pp. 47–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  155. E. Szily, J. Bowen, Z. Unoka, L. Simon, and S. Kéri, “Emotion appraisal is modulated by the genetic polymorphism of the serotonin transporter,” Journal of Neural Transmission, vol. 115, no. 6, pp. 819–822, 2008. View at Publisher · View at Google Scholar · View at Scopus
  156. R. H. Derijk and E. R. de Kloet, “Corticosteroid receptor polymorphisms: determinants of vulnerability and resilience,” European Journal of Pharmacology, vol. 583, no. 2-3, pp. 303–311, 2008. View at Publisher · View at Google Scholar · View at Scopus
  157. P. D. Wadhwa, J. Culhane, A. Chicz-DeMet, S. S. Barve, V. Rauh, and K. Farley-McCollum, “Maternal stress, endocrine/immune-inflammatory processes and vaginal infection in human pregnancy: preliminary findings,” American Journal of Obstetrics and Gynecology, vol. 185, no. 6, supplement, p. 231, 2001. View at Google Scholar
  158. L. M. Glynn, C. D. Schetter, A. Chicz-DeMet, C. J. Hobel, and C. A. Sandman, “Ethnic differences in adrenocorticotropic hormone, cortisol and corticotropin-releasing hormone during pregnancy,” Peptides, vol. 28, no. 6, pp. 1155–1161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  159. H. H. Burris and J. W. Collins Jr., “Race and preterm birth–the case for epigenetic inquiry,” Ethnicity & Disease, vol. 20, no. 3, pp. 296–299, 2010. View at Google Scholar · View at Scopus
  160. K. Flo, T. Wilsgaard, and G. Acharya, “Relation between utero-placental and feto-placental circulations: a longitudinal study,” Acta Obstetricia et Gynecologica Scandinavica, vol. 89, no. 10, pp. 1270–1275, 2010. View at Publisher · View at Google Scholar
  161. C. Ebbing, S. Rasmussen, K. M. Godfrey, M. A. Hanson, and T. Kiserud, “Fetal superior mesenteric artery: longitudinal reference ranges and evidence of regulatory link to portal liver circulation,” Early Human Development, vol. 85, no. 4, pp. 207–213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. C. H. Chang, C. H. Yu, F. M. Chang, H. C. Ko, and H. Y. Chen, “Assessment of fetal adrenal gland volume using three-dimensional ultrasound,” Ultrasound in Medicine and Biology, vol. 28, no. 11-12, pp. 1383–1387, 2002. View at Publisher · View at Google Scholar · View at Scopus
  163. C. H. Chang, C. H. Yu, H. C. Ko, C. L. Chen, and F. M. Chang, “Predicting fetal growth restriction with liver volume by three-dimensional ultrasound: efficacy evaluation,” Ultrasound in Medicine and Biology, vol. 32, no. 1, pp. 13–17, 2006. View at Publisher · View at Google Scholar · View at Scopus
  164. W. Lee, M. Balasubramaniam, R. L. Deter et al., “Fetal growth parameters and birth weight: their relationship to neonatal body composition,” Ultrasound in Obstetrics and Gynecology, vol. 33, no. 4, pp. 441–446, 2009. View at Publisher · View at Google Scholar
  165. W. Lee, R. L. Deter, B. McNie et al., “Individualized growth assessment of fetal soft tissue using fractional thigh volume,” Ultrasound in Obstetrics and Gynecology, vol. 24, no. 7, pp. 766–774, 2004. View at Publisher · View at Google Scholar
  166. H. H. Hu, H.-W. Kim, K. S. Nayak, and M. I. Goran, “Comparison of fat-water MRI and single-voxel MRS in the assessment of hepatic and pancreatic fat fractions in humans,” Obesity, vol. 18, no. 4, pp. 841–847, 2010. View at Publisher · View at Google Scholar
  167. H. H. Hu, D. L. Smith Jr., K. S. Nayak, M. I. Goran, and T. R. Nagy, “Identification of brown adipose tissue in mice with fat-water IDEAL-MRI,” Journal of Magnetic Resonance Imaging, vol. 31, no. 5, pp. 1195–1202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. S. Kirchner, T. Kieu, C. Chow, S. Casey, and B. Blumberg, “Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes,” Molecular Endocrinology, vol. 24, no. 3, pp. 526–539, 2010. View at Publisher · View at Google Scholar · View at Scopus
  169. S. N. Wood, “Stable and efficient multiple smoothing parameter estimation for generalized additive models,” Journal of the American Statistical Association, vol. 99, no. 467, pp. 673–686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  170. D. Hedeker and R. Gibbons, Longitudinal Data Analysis, John Wiley & Sons, Hoboken, NJ, USA, 2006, Edited by D. J. Balding, N. A. C. Cressie, N. I. Fisher, I. M. Johnstone, J. B. Kadane, G. Molenberghs.
  171. S. W. Raudenbush and X. F. Liu, “Effects of study duration, frequency of observation, and sample size on power in studies of group differences in polynomial change,” Psychological Methods, vol. 6, no. 3, pp. 387–401, 2001. View at Google Scholar · View at Scopus
  172. J. D. Singer and J. B. Willett, Applied Longitudinal Data Analysis: Modeling Change and Event Occurence, Oxford University Press, New York, NY, USA, 2003.
  173. A. Astrup, B. Buemann, S. Toubro, C. Ranneries, and A. Raben, “Low resting metabolic rate in subjects predisposed to obesity: a role for thyroid status,” American Journal of Clinical Nutrition, vol. 63, no. 6, pp. 879–883, 1996. View at Google Scholar · View at Scopus
  174. R. R. Wing and J. O. Hill, “Weight-loss maintenance in successful weight losers: surgical vs non-surgical methods,” International Journal of Obesity, vol. 33, no. 1, pp. 173–180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  175. R. M. Kaplan, “Should medicare reimburse providers for weight loss interventions?” American Psychologist, vol. 62, no. 3, pp. 217–219, 2007. View at Publisher · View at Google Scholar · View at Scopus