Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2013, Article ID 514206, 8 pages
http://dx.doi.org/10.1155/2013/514206
Research Article

Saturated Fatty Acid-Induced Cytotoxicity in Liver Cells Does Not Involve Phosphatase and Tensin Homologue Deleted on Chromosome 10

1Department of Food Science and Human Nutrition, Colorado State University, 234 Gifford, Fort Collins, CO 80523-1571, USA
2Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA

Received 5 December 2012; Revised 11 March 2013; Accepted 25 March 2013

Academic Editor: Peter M. Clifton

Copyright © 2013 Dong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. H. Akbar and A. H. Kawther, “Non-alcoholic fatty liver disease and metabolic syndrome: what we know and what we don't know,” Medical Science Monitor, vol. 12, no. 1, pp. RA23–RA26, 2006. View at Google Scholar · View at Scopus
  2. K. L. Donnelly, C. I. Smith, S. J. Schwarzenberg, J. Jessurun, M. D. Boldt, and E. J. Parks, “Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1343–1351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Nehra, P. Angulo, A. L. Buchman, and K. D. Lindor, “Nutritional and metabolic considerations in the etiology of nonalcoholic steatohepatitis,” Digestive Diseases and Sciences, vol. 46, no. 11, pp. 2347–2352, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Diraison, P. H. Moulin, and M. Beylot, “Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease,” Diabetes and Metabolism, vol. 29, no. 5, pp. 478–485, 2003. View at Google Scholar · View at Scopus
  5. S. Rigazio, H. R. Lehto, H. Tuunanen et al., “The lowering of hepatic fatty acid uptake improves liver function and insulin sensitivity without affecting hepatic fat content in humans,” American Journal of Physiology-Endocrinology and Metabolism, vol. 295, no. 2, pp. E413–E419, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Puri, R. A. Baillie, M. M. Wiest et al., “A lipidomic analysis of nonalcoholic fatty liver disease,” Hepatology, vol. 46, no. 4, pp. 1081–1090, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. E. Choi, I. R. Jung, Y. J. Lee et al., “Stimulation of lipogenesis as well as fatty acid oxidation protects against palmitate-induced INS-1 β-cell death,” Endocrinology, vol. 152, no. 3, pp. 816–827, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. J. E. de Vries, M. M. Vork, T. H. M. Roemen et al., “Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes,” Journal of Lipid Research, vol. 38, no. 7, pp. 1384–1394, 1997. View at Google Scholar · View at Scopus
  9. L. L. Listenberger, D. S. Ory, and J. E. Schaffer, “Palmitate-induced apoptosis can occur through a ceramide-independent pathway,” Journal of Biological Chemistry, vol. 276, no. 18, pp. 14890–14895, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Maedler, G. A. Spinas, D. Dyntar, W. Moritz, N. Kaiser, and M. Y. Donath, “Distinct effects of saturated and monounsaturated fatty acids on β-cell turnover and function,” Diabetes, vol. 50, no. 1, pp. 69–76, 2001. View at Google Scholar · View at Scopus
  11. Y. Wei, D. Wang, F. Topczewski, and M. J. Pagliassotti, “Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells,” American Journal of Physiology-Endocrinology and Metabolism, vol. 291, no. 2, pp. E275–E281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Malhi, S. F. Bronk, N. W. Werneburg, and G. J. Gores, “Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis,” Journal of Biological Chemistry, vol. 281, no. 17, pp. 12093–12101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Puri, F. Mirshahi, O. Cheung et al., “Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease,” Gastroenterology, vol. 134, no. 2, pp. 568–576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. E. Feldstein, A. Canbay, P. Angulo et al., “Hepatocyte apoptosis and Fas expression are prominent features of human nonalcoholic steatohepatitis,” Gastroenterology, vol. 125, no. 2, pp. 437–443, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. L. L. Listenberger, X. Han, S. E. Lewis et al., “Triglyceride accumulation protects against fatty acid-induced lipotoxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 6, pp. 3077–3082, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Z. Li, M. Berk, T. M. McIntyre, and A. E. Feldstein, “Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-Coa desaturase,” Journal of Biological Chemistry, vol. 284, no. 9, pp. 5637–5644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Wei, D. Wang, and M. J. Pagliassotti, “Saturated fatty acid-mediated endoplasmic reticulum stress and apoptosis are augmented by trans-10, cis-12-conjugated linoleic acid in liver cells,” Molecular and Cellular Biochemistry, vol. 303, no. 1-2, pp. 105–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. P. Myers, J. P. Stolarov, C. Eng et al., “P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 17, pp. 9052–9057, 1997. View at Google Scholar · View at Scopus
  19. B. Stiles, Y. Wang, A. Stahl et al., “Live-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 7, pp. 2082–2087, 2004. View at Google Scholar · View at Scopus
  20. M. Vinciguerra, C. Veyrat-Durebex, M. A. Moukil, L. Rubbia-Brandt, F. Rohner-Jeanrenaud, and M. Foti, “PTEN down-regulation by unsaturated fatty acids triggers hepatic steatosis via an NF-kappaBp65/mTOR-dependent mechanism,” Gastroenterology, vol. 134, no. 1, pp. 268–280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Vinciguerra, F. Carrozzino, M. Peyrou et al., “Unsaturated fatty acids promote hepatoma proliferation and progression through downregulation of the tumor suppressor PTEN,” Journal of Hepatology, vol. 50, no. 6, pp. 1132–1141, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. E. G. Bligh and W. J. Dyer, “A rapid method of total lipid extraction and purification,” Canadian Journal of Biochemistry and Physiology, vol. 37, no. 8, pp. 911–917, 1959. View at Google Scholar · View at Scopus
  23. A. van Schadewijk, E. F. A. van't Wout, J. Stolk, and P. S. Hiemstra, “A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress,” Cell Stress Chaperones, vol. 17, no. 2, pp. 275–279, 2012. View at Publisher · View at Google Scholar
  24. J. E. Schaffer, “Lipotoxicity: when tissues overeat,” Current Opinion in Lipidology, vol. 14, no. 3, pp. 281–287, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Wang, Y. Wei, and M. J. Pagliassotti, “Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis,” Endocrinology, vol. 147, no. 2, pp. 943–951, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. D. Mantzaris, E. V. Tsianos, and D. Galaris, “Interruption of triacylglycerol synthesis in the endoplasmic reticulum is the initiating event for saturated fatty acid-induced lipotoxicity in liver cells,” FEBS Journal, vol. 278, no. 3, pp. 519–530, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. L. He, X. Hou, G. Kanel et al., “The critical role of AKT2 in hepatic steatosis induced by PTEN loss,” American Journal of Pathology, vol. 176, no. 5, pp. 2302–2308, 2010. View at Publisher · View at Google Scholar · View at Scopus