Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2013, Article ID 517384, 11 pages
http://dx.doi.org/10.1155/2013/517384
Research Article

Timing of Maternal Exposure to a High Fat Diet and Development of Obesity and Hyperinsulinemia in Male Rat Offspring: Same Metabolic Phenotype, Different Developmental Pathways?

1Liggins Institute and Gravida: National Centre for Growth and Development, University of Auckland, 2-6 Park Avenue, Grafton, Auckland 1010, New Zealand
2Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8S 4L8

Received 11 February 2013; Revised 8 April 2013; Accepted 20 April 2013

Academic Editor: Peter M. Clifton

Copyright © 2013 Graham J. Howie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Hillemeier, C. S. Weisman, C. Chuang, D. S. Downs, J. McCall-Hosenfeld, and F. Camacho, “Transition to overweight or obesity among women of reproductive age,” Journal of Women's Health, vol. 20, no. 5, pp. 703–710, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. E. Norman and R. M. Reynolds, “The consequences of obesity and excess weight gain in pregnancy,” Proceedings of the Nutrition Society, vol. 70, no. 4, pp. 450–456, 2011. View at Publisher · View at Google Scholar
  3. H. A. Abenhaim, R. A. Kinch, L. Morin, A. Benjamin, and R. Usher, “Effect of prepregnancy body mass index categories on obstetrical and neonatal outcomes,” Archives of Gynecology and Obstetrics, vol. 275, no. 1, pp. 39–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. D. H. Malnick and H. Knobler, “The medical complications of obesity,” Oxford Journals: Medicine, vol. 99, no. 9, pp. 565–579, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. P. M. Catalano, “Management of obesity in pregnancy,” Obstetrics and Gynecology, vol. 109, no. 2, pp. 419–433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Poston, “Gestational weight gain: influences on the long-term health of the child,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 15, pp. 252–257, 2012. View at Google Scholar
  7. H. Hochner, Y. Friedlander, R. Calderon-Margalit et al., “Associations of maternal prepregnancy body mass index and gestational weight gain with adult offspring cardiometabolic risk factors: the Jerusalem perinatal family follow-up study,” Circulation, vol. 125, no. 11, pp. 1381–1389, 2012. View at Publisher · View at Google Scholar
  8. S. J. Spencer, “Early life programming of obesity: the impact of the perinatal environment on the development of obesity and metabolic dysfunction in the offspring,” Current Diabetes Reviews, vol. 8, no. 1, pp. 55–68, 2012. View at Publisher · View at Google Scholar
  9. H. Chen, D. Simar, K. Lambert, J. Mercier, and M. J. Morris, “Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism,” Endocrinology, vol. 149, no. 11, pp. 5348–5356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. M. Catalano, “Obesity and pregnancy—the propagation of a viscous cycle?” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 8, pp. 3505–3506, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. W. Gillman, S. L. Rifas-Shiman, K. Kleinman, E. Oken, J. W. Rich-Edwards, and E. M. Taveras, “Developmental origins of childhood overweight: potential public health impact,” Obesity, vol. 16, no. 7, pp. 1651–1656, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Oken, E. M. Taveras, K. P. Kleinman, J. W. Rich-Edwards, and M. W. Gillman, “Gestational weight gain and child adiposity at age 3 years,” The American Journal of Obstetrics and Gynecology, vol. 196, no. 4, pp. 322.e1–322.e8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. H. M. Ehrenberg, B. M. Mercer, and P. M. Catalano, “The influence of obesity and diabetes on the prevalence of macrosomia,” The American Journal of Obstetrics and Gynecology, vol. 191, no. 3, pp. 964–968, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. G. J. Howie, D. M. Sloboda, T. Kamal, and M. H. Vickers, “Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet,” Journal of Physiology, vol. 587, no. 4, pp. 905–915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. D. M. Sloboda, G. J. Howie, A. Pleasants, P. D. Gluckman, and M. H. Vickers, “Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat,” PLoS ONE, vol. 4, no. 8, Article ID e6744, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. C. Battista, M. F. Hivert, K. Duval, and J. P. Baillargeon, “Intergenerational cycle of obesity and diabetes: how can we reduce the burdens of these conditions on the health of future generations?” Experimental Diabetes Research, vol. 2011, Article ID 596060, 19 pages, 2011. View at Publisher · View at Google Scholar
  17. T. J. Kieffer and J. F. Habener, “The adipoinsular axis: effects of leptin on pancreatic β-cells,” The American Journal of Physiology, vol. 278, no. 1, pp. E1–E14, 2000. View at Google Scholar · View at Scopus
  18. S. L. Gray, C. Donald, A. Jetha, S. D. Covey, and T. J. Kieffer, “Hyperinsulinemia precedes insulin resistance in mice lacking pancreatic β-cell leptin signaling,” Endocrinology, vol. 151, no. 9, pp. 4178–4186, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. D. Covey, R. D. Wideman, C. McDonald et al., “The pancreatic β cell is a key site for mediating the effects of leptin on glucose homeostasis,” Cell Metabolism, vol. 4, no. 4, pp. 291–302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. J. Dudley, D. M. Sloboda, K. L. Connor, J. Beltrand, and M. H. Vickers, “Offspring of mothers fed a high fat diet display hepatic cell cycle inhibition and associated changes in gene expression and DNA methylation,” PLoS ONE, vol. 6, no. 7, Article ID e21662, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. K. L. Connor, M. H. Vickers, J. Beltrand, M. J. Meaney, and D. M. Sloboda, “Nature, nurture or nutrition? Impact of maternal nutrition on maternal care, offspring development and reproductive function,” Journal of Physiology, vol. 590, part 9, pp. 2167–2180, 2012. View at Publisher · View at Google Scholar
  22. J. Beltrand, D. M. Sloboda, K. L. Connor, M. Truong, and M. H. Vickers, “The effect of neonatal leptin antagonism in male rat offspring is dependent upon the interaction between prior maternal nutritional status and post-weaning diet,” Journal of Nutrition and Metabolism, vol. 2012, Article ID 296935, 10 pages, 2012. View at Publisher · View at Google Scholar
  23. K. L. Connor, M. H. Vickers, C. Cupido, E. Sirimanne, and D. M. Sloboda, “Maternal high fat diet during critical windows of development alters adrenal cortical and medullary enzyme expression in adult male rat offspring,” Journal of the Developmental Origins of Health and Disease, vol. 1, no. 4, pp. 245–254, 2010. View at Publisher · View at Google Scholar
  24. P. J. Mark, C. Sisala, K. Connor et al., “A maternal high-fat diet in rat pregnancy reduces growth of the fetus and the placental junctional zone, but not placental labyrinth zone growth,” Journal of the Developmental Origins of Health and Disease, vol. 2, no. 1, pp. 63–70, 2011. View at Publisher · View at Google Scholar
  25. D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher, and R. C. Turner, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Google Scholar · View at Scopus
  26. M. P. Hermans, J. C. Levy, R. J. Morris, and R. C. Turner, “Comparison of tests of β-cell function across a range of glucose tolerance from normal to diabetes,” Diabetes, vol. 48, no. 9, pp. 1779–1786, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. A. B. Bernal, M. H. Vickers, M. B. Hampton, R. A. Poynton, and D. M. Sloboda, “Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring,” PLoS ONE, vol. 5, no. 12, Article ID e15558, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Vandesompele, K. de Preter, F. Pattyn et al., “Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.,” Genome biology, vol. 3, no. 7, Article ID RESEARCH0034, 2002. View at Google Scholar · View at Scopus
  29. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Armitage, L. Poston, and P. Taylor, “Developmental origins of obesity and the metabolic syndrome: the role of maternal obesity,” Frontiers of Hormone Research, vol. 36, pp. 73–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Zhang, L. Rattanatray, J. L. Morrison, L. M. Nicholas, S. Lie, and I. C. McMillen, “Maternal obesity and the early origins of childhood obesity: weighing up the benefits and costs of maternal weight loss in the periconceptional period for the offspring,” Experimental Diabetes Research, vol. 2011, Article ID 585749, 10 pages, 2011. View at Publisher · View at Google Scholar
  32. N. M. Thompson, A. M. Norman, S. S. Donkin et al., “Prenatal and postnatal pathways to obesity: different underlying mechanisms, different metabolic outcomes,” Endocrinology, vol. 148, no. 5, pp. 2345–2354, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Fuentes, I. Ara, A. Guadalupe-Grau et al., “Leptin receptor 170 kDa (OB-R170) protein expression is reduced in obese human skeletal muscle: a potential mechanism of leptin resistance,” Experimental Physiology, vol. 95, no. 1, pp. 160–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. Wang, Y. T. Zhou, T. Kakuma et al., “Leptin resistance of adipocytes in obesity: role of suppressors of cytokine signaling,” Biochemical and Biophysical Research Communications, vol. 277, no. 1, pp. 20–26, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Bjørbæk, K. El-Haschimi, J. D. Frantz, and J. S. Flier, “The role of SOCS-3 in leptin signaling and leptin resistance,” The Journal of Biological Chemistry, vol. 274, no. 42, pp. 30059–30065, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Laubner, T. J. Kieffer, N. T. Lam, X. Niu, F. Jakob, and J. Seufert, “Inhibition of preproinsulin gene expression by leptin induction of suppressor of cytokine signaling 3 in pancreatic β-cells,” Diabetes, vol. 54, no. 12, pp. 3410–3417, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Peiser, G. P. McGregor, and R. E. Lang, “Leptin receptor expression and suppressor of cytokine signaling transcript levels in high-fat-fed rats,” Life Sciences, vol. 67, no. 24, pp. 2971–2981, 2000. View at Google Scholar · View at Scopus
  38. G. R. Steinberg, A. C. Smith, S. Wormald, P. Malenfant, C. Collier, and D. J. Dyck, “Endurance training partially reverses dietary-induced leptin resistance in rodent skeletal muscle,” The American Journal of Physiology, vol. 286, no. 1, pp. E57–E63, 2004. View at Google Scholar · View at Scopus
  39. G. E. White, A. Cotterill, M. R. Addley, E. J. Soilleux, and D. R. Greaves, “Suppressor of cytokine signalling protein SOCS3 expression is increased at sites of acute and chronic inflammation,” Journal of Molecular Histology, vol. 42, no. 2, pp. 137–151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Yasukawa, M. Ohishi, H. Mori et al., “IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages,” Nature Immunology, vol. 4, no. 6, pp. 551–556, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Seufert, “Leptin effects on pancreatic β-cell gene expression and function,” Diabetes, vol. 53, no. 1, pp. S152–S158, 2004. View at Google Scholar · View at Scopus
  42. A. S. Metlakunta, M. Sahu, and A. Sahu, “Hypothalamic phosphatidylinositol 3-kinase pathway of leptin signaling is impaired during the development of diet-induced obesity in FVB/N mice,” Endocrinology, vol. 149, no. 3, pp. 1121–1128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. C. A. Aspinwall, W. J. Qian, M. G. Roper, R. N. Kulkarni, C. R. Kahn, and R. T. Kennedy, “Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release of intracellular Ca2+ stores in insulin-stimulated insulin secretion in β-cells,” The Journal of Biological Chemistry, vol. 275, no. 29, pp. 22331–22338, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. I. B. Leibiger, B. Leibiger, T. Moede, and P. O. Berggren, “Exocytosis of insulin promotes insulin gene transcription via the insulin receptor/PI-3 kinase/p70 s6 kinase and CaM kinase pathways,” Molecular Cell, vol. 1, no. 6, pp. 933–938, 1998. View at Google Scholar · View at Scopus
  45. R. L. Martin, E. Perez, Y. J. He, R. Dawson Jr., and W. J. Millard, “Leptin resistance is associated with hypothalamic leptin receptor mRNA and protein downregulation,” Metabolism, vol. 49, no. 11, pp. 1479–1484, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Wilsey and P. J. Scarpace, “Caloric restriction reverses the deficits in leptin receptor protein and leptin signaling capacity associated with diet-induced obesity: role of leptin in the regulation of hypothalamic long-form leptin receptor expression,” Journal of Endocrinology, vol. 181, no. 2, pp. 297–306, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Zhang and P. J. Scarpace, “The role of leptin in leptin resistance and obesity,” Physiology and Behavior, vol. 88, no. 3, pp. 249–256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. D. R. Grattan, S. R. Ladyman, and R. A. Augustine, “Hormonal induction of leptin resistance during pregnancy,” Physiology and Behavior, vol. 91, no. 4, pp. 366–374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Rui, M. Yuan, D. Frantz, S. Shoelson, and M. F. White, “SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2,” The Journal of Biological Chemistry, vol. 277, no. 44, pp. 42394–42398, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Ueki, T. Kondo, and C. R. Kahn, “Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms,” Molecular and Cellular Biology, vol. 24, no. 12, pp. 5434–5446, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. S. B. Jorgensen, O. 'Neill HM, L. Sylow et al., “Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity,” Diabetes, vol. 62, no. 1, pp. 56–64, 2013. View at Publisher · View at Google Scholar
  52. W. Becker, “Leptin signal transduction,” in Leptin and Leptin Antagonists, A. Gertler, Ed., pp. 1–9, Landes Bioscience, Austin, Tex, USA, 2009. View at Google Scholar
  53. R. N. Kulkarni, J. N. Winnay, M. Daniels et al., “Altered function of insulin receptor substrate 1-deficient mouse islets and cultured β-cell lines,” Journal of Clinical Investigation, vol. 104, no. 12, pp. R69–R75, 1999. View at Google Scholar · View at Scopus
  54. W. Y. Kwong, A. E. Wild, P. Roberts, A. C. Willis, and T. P. Fleming, “Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension,” Development, vol. 127, no. 19, pp. 4195–4202, 2000. View at Google Scholar · View at Scopus
  55. E. S. Jungheim, E. L. Schoeller, K. L. Marquard, E. D. Louden, J. E. Schaffer, and K. H. Moley, “Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring,” Endocrinology, vol. 151, no. 8, pp. 4039–4046, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. A. J. Watkins, A. Wilkins, C. Cunningham et al., “Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring,” Journal of Physiology, vol. 586, no. 8, pp. 2231–2244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Zambrano, P. M. Martínez-Samayoa, G. L. Rodríguez-González, and P. W. Nathanielsz, “Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats,” Journal of Physiology, vol. 588, no. 10, pp. 1791–1799, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. M. S. Patel and M. Srinivasan, “Metabolic programming: causes and consequences,” The Journal of Biological Chemistry, vol. 277, no. 3, pp. 1629–1632, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. R. A. Simmons, “Role of metabolic programming in the pathogenesis of β-cell failure in postnatal life,” Reviews in Endocrine and Metabolic Disorders, vol. 8, no. 2, pp. 95–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. I. B. Leibiger, B. Leibiger, and P. O. Berggren, “Insulin signaling in the pancreatic β-cell,” Annual Review of Nutrition, vol. 28, pp. 233–251, 2008. View at Publisher · View at Google Scholar · View at Scopus