Table of Contents Author Guidelines Submit a Manuscript
Journal of Nutrition and Metabolism
Volume 2016 (2016), Article ID 3703216, 14 pages
http://dx.doi.org/10.1155/2016/3703216
Research Article

Effect of the Lipoxygenase Inhibitor Baicalein on Muscles in Ovariectomized Rats

1Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, Göttingen, Germany
2Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
3Department of Animal Science, University of Göttingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany

Received 12 September 2016; Accepted 27 October 2016

Academic Editor: Phillip B. Hylemon

Copyright © 2016 D. Saul et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Lange and T. Lampert, Daten und Fakten: Ergebnisse der Studie, Gesundheit in Deutschland aktuell 2009, Beiträge zur Gesundheitsberichterstattung des Bundes, Robert Koch Institute, Berlin, Germany, 2011.
  2. B. Haussler, H. Gothe, D. Gol et al., “Epidemiology, treatment and costs of osteoporosis in Germany—the BoneEVA Study,” Osteoporosis International, vol. 18, no. 1, pp. 77–84, 2007. View at Publisher · View at Google Scholar
  3. S. Sjöblom, J. Suuronen, T. Rikkonen, R. Honkanen, H. Kröger, and J. Sirola, “Relationship between postmenopausal osteoporosis and the components of clinical sarcopenia,” Maturitas, vol. 75, no. 2, pp. 175–180, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Cunha-Henriques, L. Costa-Paiva, A. M. Pinto-Neto et al., “Postmenopausal women with osteoporosis and musculoskeletal status: a comparative cross-sectional study,” Journal of Clinical Medicine Research, vol. 3, no. 4, pp. 168–176, 2011. View at Publisher · View at Google Scholar
  5. H. He, Y. Liu, Q. Tian et al., “Relationship of sarcopenia and body composition with osteoporosis,” Osteoporosis International, vol. 27, no. 2, pp. 473–482, 2015. View at Publisher · View at Google Scholar
  6. H. Kaji, “Linkage between muscle and bone: common catabolic signals resulting in osteoporosis and sarcopenia,” Current Opinion in Clinical Nutrition & Metabolic Care, vol. 16, no. 3, pp. 272–277, 2013. View at Google Scholar
  7. N. Woo and S. H. Kim, “Sarcopenia influences fall-related injuries in community-dwelling older adults,” Geriatric Nursing, vol. 35, no. 4, pp. 279–282, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Tanimoto, M. Watanabe, W. Sun et al., “Sarcopenia and falls in community-dwelling elderly subjects in Japan: defining sarcopenia according to criteria of the European Working Group on Sarcopenia in Older People,” Archives of Gerontology and Geriatrics, vol. 59, no. 2, pp. 295–299, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. J. A. Grisso, J. L. Kelsey, B. L. Strom et al., “Risk factors for falls as a cause of hip fracture in women,” The New England Journal of Medicine, vol. 324, no. 19, pp. 1326–1331, 1991. View at Publisher · View at Google Scholar
  10. H. Kaji, “Interaction between muscle and bone,” Journal of Bone Metabolism, vol. 21, no. 1, p. 29, 2014. View at Publisher · View at Google Scholar
  11. J. A. Batsis, T. A. Mackenzie, L. K. Barre, F. Lopez-Jimenez, and S. J. Bartels, “Sarcopenia, sarcopenic obesity and mortality in older adults: results from the National Health and Nutrition Examination Survey III,” European journal of clinical nutrition, vol. 68, no. 9, pp. 1001–1007, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Nilwik, T. Snijders, M. Leenders et al., “The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size,” Experimental Gerontology, vol. 48, no. 5, pp. 492–498, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. S. von Haehling, J. E. Morley, and S. D. Anker, “From muscle wasting to sarcopenia and myopenia: update 2012,” Journal of Cachexia, Sarcopenia and Muscle, vol. 3, no. 4, pp. 213–217, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Terracciano, M. Celi, D. Lecce et al., “Differential features of muscle fiber atrophy in osteoporosis and osteoarthritis,” Osteoporosis International, vol. 24, no. 3, pp. 1095–1100, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Roubenoff, “Physical activity, inflammation, and muscle loss,” Nutrition Reviews, vol. 65, no. 3, pp. S208–S212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Tagliaferri, Y. Wittrant, M.-J. Davicco, S. Walrand, and V. Coxam, “Muscle and bone, two interconnected tissues,” Ageing Research Reviews, vol. 21, pp. 55–70, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. C. M. Girgis, “Integrated therapies for osteoporosis and sarcopenia: from signaling pathways to clinical trials,” Calcified Tissue International, vol. 96, no. 3, pp. 243–255, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. C. M. Girgis, N. Mokbel, and D. J. DiGirolamo, “Therapies for musculoskeletal disease: can we treat two birds with one stone?” Current Osteoporosis Reports, vol. 12, no. 2, pp. 142–153, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Arounleut, P. Bialek, L.-F. Liang et al., “A myostatin inhibitor (propeptide-Fc) increases muscle mass and muscle fiber size in aged mice but does not increase bone density or bone strength,” Experimental Gerontology, vol. 48, no. 9, pp. 898–904, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. U. Tarantino, J. Baldi, M. Celi et al., “Osteoporosis and sarcopenia: the connections,” Aging Clinical and Experimental Research, vol. 25, supplement 1, p. 5, 2013. View at Publisher · View at Google Scholar
  21. H. Wang, A. Listrat, B. Meunier et al., “Apoptosis in capillary endothelial cells in ageing skeletal muscle,” Aging Cell, vol. 13, no. 2, pp. 254–262, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Hénique, A. Mansouri, E. Vavrova et al., “Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype,” FASEB Journal, vol. 29, no. 6, pp. 2473–2483, 2015. View at Publisher · View at Google Scholar · View at Scopus
  23. A. P. Lightfoot, R. McCormick, G. A. Nye, and A. McArdle, “Mechanisms of skeletal muscle ageing; avenues for therapeutic intervention,” Current Opinion in Pharmacology, vol. 16, no. 1, pp. 116–121, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Wozniak, A. Drys, and A. Matkowski, “Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix,” Natural Product Research, vol. 29, no. 16, pp. 1567–1570, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Stavniichuk, V. R. Drel, H. Shevalye et al., “Baicalein alleviates diabetic peripheral neuropathy through inhibition of oxidative-nitrosative stress and p38 MAPK activation,” Experimental Neurology, vol. 230, no. 1, pp. 106–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Czubowicz, G. A. Czapski, M. Cieślik, and R. P. Strosznajder, “Lipoxygenase inhibitors protect brain cortex macromolecules against oxidation evoked by nitrosative stress,” Folia Neuropathologica, vol. 48, no. 4, pp. 283–292, 2010. View at Google Scholar · View at Scopus
  27. L. Cui, X. Zhang, R. Yang et al., “Baicalein is neuroprotective in rat MCAO model: role of 12/15-lipoxygenase, mitogen-activated protein kinase and cytosolic phospholipase A2,” Pharmacology Biochemistry and Behavior, vol. 96, no. 4, pp. 469–475, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Chen, “Natural products triggering biological targets- a review of the anti-inflammatory phytochemicals targeting the arachidonic acid pathway in allergy asthma and rheumatoid arthritis,” Current Drug Targets, vol. 12, no. 3, pp. 288–301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Zhang, Y. Zhu, X. Chen et al., “Baicalein ameliorates inflammatory-related apoptotic and catabolic phenotypes in human chondrocytes,” International Immunopharmacology, vol. 21, no. 2, pp. 301–308, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Cheong, S.-Y. Ryu, M.-H. Oak, S.-H. Cheon, G.-S. Yoo, and K.-M. Kim, “Studies of structure activity relationship of flavonoids for the anti-allergic actions,” Archives of Pharmacal Research, vol. 21, no. 4, pp. 478–480, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Krishnamoorthy, R. Jin, Y. Cai et al., “12-Lipoxygenase and the regulation of hypoxia-inducible factor in prostate cancer cells,” Experimental Cell Research, vol. 316, no. 10, pp. 1706–1715, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Palus, S. Von Haehling, and J. Springer, “Muscle wasting: an overview of recent developments in basic research,” International Journal of Cardiology, vol. 176, no. 3, pp. 640–644, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Iwasa, T. Matsuzaki, A. Tungalagsuvd et al., “Effects of ovariectomy on the inflammatory responses of female rats to the central injection of lipopolysaccharide,” Journal of Neuroimmunology, vol. 277, no. 1-2, pp. 50–56, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. E. K. Stuermer, S. Sehmisch, T. Rack et al., “Estrogen and raloxifene improve metaphyseal fracture healing in the early phase of osteoporosis. A new fracture-healing model at the tibia in rat,” Langenbeck's Archives of Surgery, vol. 395, no. 2, pp. 163–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. V. Corazza, F. R. Paolillo, F. C. Groppo, V. S. Bagnato, and P. H. F. Caria, “Phototherapy and resistance training prevent sarcopenia in ovariectomized rats,” Lasers in Medical Science, vol. 28, no. 6, pp. 1467–1474, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. E. K. Stuermer, M. Komrakova, C. Werner et al., “Musculoskeletal response to whole-body vibration during fracture healing in intact and ovariectomized rats,” Calcified Tissue International, vol. 87, no. 2, pp. 168–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. D. H. Kim, M. A. Hossain, Y. J. Kang et al., “Baicalein, an active component of Scutellaria baicalensis Georgi, induces apoptosis in human colon cancer cells and prevents AOM/DSS-induced colon cancer in mice,” International Journal of Oncology, vol. 43, no. 5, pp. 1652–1658, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Pu, X.-A. Wang, M. Salim et al., “Baicalein, a natural product, selectively activating AMPKα2 and ameliorates metabolic disorder in diet-induced mice,” Molecular and Cellular Endocrinology, vol. 362, no. 1-2, pp. 128–138, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Horák, “A successive histochemical staining for succinate dehydrogenase and “reversed”-ATPase in a single section for the skeletal muscle fibre typing,” Histochemistry, vol. 78, no. 4, pp. 545–553, 1983. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Andersen, “Capillary density in skeletal muscle of man,” Acta Physiologica Scandinavica, vol. 95, no. 2, pp. 203–205, 1975. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Komrakova, C. Werner, M. Wicke et al., “Effect of daidzein, 4-methylbenzylidene camphor or estrogen on gastrocnemius muscle of osteoporotic rats undergoing tibia healing period,” Journal of Endocrinology, vol. 201, no. 2, pp. 253–262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. S. J. Prior, A. S. Ryan, J. B. Blumenthal, J. M. Watson, L. I. Katzel, and A. P. Goldberg, “Sarcopenia is associated with lower skeletal muscle capillarization and exercise capacity in older adults,” The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, vol. 71, no. 8, pp. 1096–1101, 2016. View at Publisher · View at Google Scholar
  43. J. Fang, L. Yang, R. Zhang, X. Zhu, and P. Wang, “Are there differences between Sprague-Dawley and Wistar rats in long-term effects of ovariectomy as a model for postmenopausal osteoporosis?” International Journal of Clinical and Experimental Pathology, vol. 8, no. 2, pp. 1491–1502, 2015. View at Google Scholar · View at Scopus
  44. N. Mohd Effendy, S. Abdullah, M. F. M. Yunoh, and A. N. Shuid, “Time and dose-dependent effects of Labisia pumila on the bone strength of postmenopausal osteoporosis rat model,” BMC Complementary and Alternative Medicine, vol. 15, no. 1, article 58, 2015. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Schlewitz, P. Govindarajan, N. Schliefke et al., “Ovariectomy and calcium/vitamin D2/D3 deficient diet as a model of osteoporosis in the spine of Sprague-Dawley rats,” Zeitschrift für Orthopädie und Unfallchirurgie, vol. 151, no. 1, pp. 14–19, 2013. View at Publisher · View at Google Scholar
  46. M. Lee, H. Kim, D. Singh et al., “Metabolite Profiling Reveals the Effect of Dietary Rubus coreanus Vinegar on Ovariectomy-Induced Osteoporosis in a Rat Model,” Molecules, vol. 21, no. 2, article 149, 2016. View at Publisher · View at Google Scholar
  47. J. I. Francisco, Y. Yu, R. A. Oliver, and W. R. Walsh, “Relationship between age, skeletal site, and time post-ovariectomy on bone mineral and trabecular microarchitecture in rats,” Journal of Orthopaedic Research, vol. 29, no. 2, pp. 189–196, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Tagliaferri, J. Salles, J.-F. Landrier et al., “Increased body fat mass and tissue lipotoxicity associated with ovariectomy or high-fat diet differentially affects bone and skeletal muscle metabolism in rats,” European Journal of Nutrition, vol. 54, no. 7, pp. 1139–1149, 2015. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Aydin, H. Kenar, H. Atmaca et al., “The short- and long- term effects of estrogen deficiency on apoptosis in musculoskeletal tissues: an experimental animal model study,” Archives of Iranian Medicine, vol. 16, no. 5, pp. 271–276, 2013. View at Google Scholar · View at Scopus
  50. W. Wang, P.-H. Zhou, C.-G. Xu, X. Zhou, W. Hu, and J. Zhang, “Baicalein attenuates renal fibrosis by inhibiting inflammation via down-regulating NF-κB and MAPK signal pathways,” Journal of Molecular Histology, vol. 46, no. 3, pp. 283–290, 2015. View at Publisher · View at Google Scholar
  51. K. Wend, P. Wend, and S. A. Krum, “Tissue-specific effects of loss of estrogen during menopause and aging,” Frontiers in Endocrinology, vol. 3, article 19, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Holm and B.-O. Nilsson, “Identification and characterization of new mechanisms in vascular oestrogen signalling,” Basic & Clinical Pharmacology & Toxicology, vol. 113, no. 5, pp. 287–293, 2013. View at Publisher · View at Google Scholar
  53. M. A. Rogers and W. J. Evans, “Changes in skeletal muscle with aging: effects of exercise training,” Exercise and Sport Sciences Reviews, vol. 21, no. 1, pp. 65–102, 1993. View at Google Scholar · View at Scopus
  54. Y.-H. Liu, Y. Huang, and X. Shao, “Effects of estrogen on genioglossal muscle contractile properties and fiber-type distribution in chronic intermittent hypoxia rats,” European Journal of Oral Sciences, vol. 117, no. 6, pp. 685–690, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Brown, J. A. Ferreira, A. M. Foley, and K. M. Hemmann, “A rehabilitation exercise program to remediate skeletal muscle atrophy in an estrogen-deficient organism may be ineffective,” European Journal of Applied Physiology, vol. 112, no. 1, pp. 91–104, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. M. J. Kim, J.-H. Park, D. Y. Kwon et al., “The supplementation of Korean mistletoe water extracts reduces hot flushes, dyslipidemia, hepatic steatosis, and muscle loss in ovariectomized rats,” Experimental Biology and Medicine, vol. 240, no. 4, pp. 477–487, 2015. View at Publisher · View at Google Scholar · View at Scopus
  57. J.-Y. Lee and D.-C. Lee, “Muscle strength and quality are associated with severity of menopausal symptoms in peri- and post-menopausal women,” Maturitas, vol. 76, no. 1, pp. 88–94, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. N. R. Oak, J. P. Gumucio, M. D. Flood et al., “Inhibition of 5-LOX, COX-1, and COX-2 increases tendon healing and reduces muscle fibrosis and lipid accumulation after rotator cuff repair,” American Journal of Sports Medicine, vol. 42, no. 12, pp. 2860–2868, 2014. View at Publisher · View at Google Scholar · View at Scopus
  59. A. M. Forsberg, E. Nilsson, J. Werneman, J. Bergstrom, and E. Hultman, “Muscle composition in relation to age and sex,” Clinical Science, vol. 81, no. 2, pp. 249–256, 1991. View at Publisher · View at Google Scholar · View at Scopus
  60. G. Layec, C. R. Hart, J. D. Trinity, Y. Le Fur, E.-K. Jeong, and R. S. Richardson, “Skeletal muscle work efficiency with age: the role of non-contractile processes,” Clinical Science, vol. 128, no. 3, pp. 213–223, 2015. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Ciciliot, A. C. Rossi, K. A. Dyar, B. Blaauw, and S. Schiaffino, “Muscle type and fiber type specificity in muscle wasting,” International Journal of Biochemistry and Cell Biology, vol. 45, no. 10, pp. 2191–2199, 2013. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. R. Huo, P. Suriyaarachchi, F. Gomez et al., “Comprehensive nutritional status in sarco-osteoporotic older fallers,” Journal of Nutrition, Health and Aging, vol. 19, no. 4, pp. 474–480, 2015. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Zheng, X. Mao, J. Ling, Q. He, J. Quan, and H. Jiang, “Association between serum level of magnesium and postmenopausal osteoporosis: a meta-analysis,” Biological Trace Element Research, vol. 159, no. 1–3, pp. 8–14, 2014. View at Publisher · View at Google Scholar
  64. I. Momken, P. Lechêne, N. Koulmann et al., “Impaired voluntary running capacity of creatine kinase-deficient mice,” Journal of Physiology, vol. 565, no. 3, pp. 951–964, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Bhattacharya, R. Hamilton, A. Jernigan et al., “Genetic ablation of 12/15-lipoxygenase but not 5-lipoxygenase protects against denervation-induced muscle atrophy,” Free Radical Biology and Medicine, vol. 67, pp. 30–40, 2014. View at Publisher · View at Google Scholar · View at Scopus
  66. A.-W. Wang, L. Song, J. Miao et al., “Baicalein attenuates angiotensin II-induced cardiac remodeling via inhibition of AKT/mTOR, ERK1/2, NF-κB, and calcineurin signaling pathways in mice,” American Journal of Hypertension, vol. 28, no. 4, pp. 518–526, 2015. View at Publisher · View at Google Scholar · View at Scopus
  67. S.-F. Chen, C.-W. Hsu, W.-H. Huang, and J.-Y. Wang, “Post-injury baicalein improves histological and functional outcomes and reduces inflammatory cytokines after experimental traumatic brain injury,” British Journal of Pharmacology, vol. 155, no. 8, pp. 1279–1296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Kumar, E. R. Kasala, L. N. Bodduluru, V. Dahiya, and M. Lahkar, “Baicalein protects isoproterenol induced myocardial ischemic injury in male Wistar rats by mitigating oxidative stress and inflammation,” Inflammation Research, vol. 65, no. 8, pp. 613–622, 2016. View at Publisher · View at Google Scholar
  69. J. Li, Y. Wu, S. Zhang et al., “Baicalein protect pancreatic injury in rats with severe acute pancreatitis by inhibiting pro-inflammatory cytokines expression,” Biochemical and Biophysical Research Communications, vol. 466, no. 4, pp. 664–669, 2015. View at Publisher · View at Google Scholar · View at Scopus
  70. E. Tavares, R. Maldonado, M. L. Ojeda, and F. J. Minano, “Circulating inflammatory mediators during start of fever in differential diagnosis of gram-negative and gram-positive infections in leukopenic rats,” Clinical and Diagnostic Laboratory Immunology, vol. 12, no. 9, pp. 1085–1093, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. S.-F. Li, J.-J. Tang, J. Chen et al., “Regulation of bone formation by baicalein via the mTORC1 pathway,” Drug Design, Development and Therapy, vol. 9, pp. 5169–5183, 2015. View at Publisher · View at Google Scholar
  72. J. Zong, D.-P. Zhang, H. Zhou et al., “Baicalein protects against cardiac hypertrophy through blocking MEK-ERK1/2 signaling,” Journal of Cellular Biochemistry, vol. 114, no. 5, pp. 1058–1065, 2013. View at Publisher · View at Google Scholar · View at Scopus
  73. Y. Gao, J. Lu, Y. Zhang, Y. Chen, Z. Gu, and X. Jiang, “Baicalein attenuates bleomycin-induced pulmonary fibrosis in rats through inhibition of miR-21,” Pulmonary Pharmacology and Therapeutics, vol. 26, no. 6, pp. 649–654, 2013. View at Publisher · View at Google Scholar · View at Scopus