Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2009, Article ID 238536, 6 pages
http://dx.doi.org/10.1155/2009/238536
Research Article

Drug-Carrying Magnetic Nanocomposite Particles for Potential Drug Delivery Systems

1Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA
2Department of Bioengineering, University of KS, Lawrence, KS, USA
3Institute of Physics, Academia Sinica, Taipei, Taiwan
4Department of Basic Engineering Science, Menoufiya University, Shebin, Egypt
5Department of Physics, Wichita State University, Wichita, KS, USA

Received 10 May 2009; Accepted 5 August 2009

Academic Editor: Sakhrat Khizroev

Copyright © 2009 R. Asmatulu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C.-K. Kim and S.-J. Lim, “Recent progress in drug delivery systems for anticancer agents,” Archives of Pharmacal Research, vol. 25, no. 3, pp. 229–239, 2002. View at Google Scholar · View at Scopus
  2. http://www.cancer.org/docroot/home/index.asp, October 2008.
  3. S. Goodwin, C. Peterson, C. Hoh, and C. Bittner, “Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy,” Journal of Magnetism and Magnetic Materials, vol. 194, no. 1, pp. 132–139, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Sershen and J. West, “Implantable, polymeric systems for modulated drug delivery,” Advanced Drug Delivery Reviews, vol. 54, no. 9, pp. 1225–1235, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. A. S. Lübbe, C. Alexiou, and C. Bergemann, “Clinical applications of magnetic drug targeting,” Journal of Surgical Research, vol. 95, no. 2, pp. 200–206, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. A. S. Lübbe, C. Bergemann, J. Brock, and D. G. McClure, “Physiological aspects in magnetic drug-targeting,” Journal of Magnetism and Magnetic Materials, vol. 194, no. 1, pp. 149–155, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. S. R. Rudge, T. L. Kurtz, C. R. Vessely, L. G. Catterall, and D. L. Williamson, “Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy,” Biomaterials, vol. 21, no. 14, pp. 1411–1420, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. J. H. Leach, Magnetic targeted drug delivery, M.S. thesis, Virginia Tech Department of Electrical and Computer Engineering, Blacksburg, Va, USA, 2002.
  9. L. A Harris, Polymer stabilized magnetite nanoparticles and poly(propylene oxide) modified styrene-dimethacrylate networks, Ph.D. dissertation, Virginia Tech Department of Chemistry, Blacksburg, Va, USA, 2002.
  10. S.A. Gómez-Lopera, R. C. Plaza, and A. V. Delgado, “Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles,” Journal of Colloid and Interface Science, vol. 240, no. 1, pp. 40–47, 2001. View at Publisher · View at Google Scholar
  11. R. Asmatulu, M. A. Zalich, R. O. Claus, and J. S. Riffle, “Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields,” Journal of Magnetism and Magnetic Materials, vol. 292, pp. 108–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Asmatulu, Biomaterials—Class Notes, Wichita State University, Wichita, Kan, USA, 2008.
  13. http://www.devicelink.com/mpb/archive/97/11/003.html, October 2008.
  14. P. A. R. Glynn, B. M. E. van der Hoff, and P. M. Reilly, “A general model for prediction of molecular weight distributions of degraded polymers, development and comparison with ultrasonic degradation experiments,” Journal of Macromolecular Science, Part A, vol. 6, pp. 1653–1664, 1976. View at Google Scholar
  15. C. N. O'Brien and A. J. Guidry, “Formulation of poly(D,L-lactide-co-glycolide) microspheres and their ingestion by bovine leukocytes,” Journal of Dairy Science, vol. 79, no. 11, pp. 1954–1959, 1996. View at Google Scholar
  16. Lima K. M. and J. M. Rodrigues, “Poly(D,L-lactide-co-glycolide) microspheres as a controlled release antigen delivery system,” Brazilian Journal of Medical and Biological Research, vol. 32, pp. 171–180, 1999. View at Google Scholar
  17. S.-J. Lee, J.-R. Jeong, S.-C. Shin et al., “Nanoparticles of magnetic ferric oxides encapsulated with poly(D,L lactide-co-glycolide) and their applications to magnetic resonance imaging contrast agent,” Journal of Magnetism and Magnetic Materials, vol. 272–276, part 3, pp. 2432–2433, 2004. View at Publisher · View at Google Scholar
  18. J. Emami, H. Hamishehkar, A. R. Najafabadi et al., “Particle size design of PLGA microspheres for potential pulmonary drug delivery using response surface methodology,” Journal of Microencapsulation, vol. 26, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. B. K. Kim, S. J. Hwang, J. B. Park, and H. J. Park, “Preparation and characterization of drug-loaded polymethacrylate microspheres by an emulsion solvent evaporation method,” Journal of Microencapsulation, vol. 19, no. 6, pp. 811–822, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Asmatulu, A. Fakhari, H. L. Wamocha, H. H. Hamdeh, and J. C. Ho, “Fabrication of magnetic nanocomposite spheres for targeted drug delivery,” in Proceedings of ASME International Mechanical Engineering Congress and Exposition (IMECE '08), pp. 1–4, Boston, Mass, USA, November 2008.
  21. A. Santoveña, J. T. García, A. Oliva, M. Llabrés, and J. B. Fariña, “A mathematical model for interpreting in vitro rhGH release from laminar implants,” International Journal of Pharmaceutics, vol. 309, no. 1-2, pp. 38–43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Santoveña, C. Álvarez-Lorenzo, A. Concheiro, M. Llabrés, and J. B. Fariña, “Rheological properties of PLGA film-based implants: correlation with polymer degradation and SPf66 antimalaric synthetic peptide release,” Biomaterials, vol. 25, no. 5, pp. 925–931, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. K. H. J. Buschow, Handbook of Magnetic Materials, vol. 16, Elsevier, Amsterdam, The Netherlands, 2006.
  24. H. H. Hamdeh, H. Al-Ghanem, T. J. Folkerts, M. M. Eltabey, J. C. Ho, and R. J. Willey, “Temperature dependent lattice distortion in aerogel-produced Fe-Mo oxides,” Applied Physics Letters, vol. 92, no. 24, Article ID 243114, 2008. View at Publisher · View at Google Scholar
  25. R. Asmatulu, R. O. Claus, J. S. Riffle, and M. Zalich, “Targeting magnetic nanoparticles in high magnetic fields for drug delivery purposes,” in Proceedings of the Materials Research Society Symposium (MRS '04), vol. 820, pp. 63–68, San Francisco, Calif, USA, April 2004.
  26. Y. Gogotsi, Nanomaterials Handbook, CRC Press, Boca Raton, Fla, USA, 2006.
  27. E. Lima Jr., A. L. Brandl, A. D. Arelaro, and G. F. Goya, “Spin disorder and magnetic anisotropy in Fe3O4 nanoparticle,” Journal of Applied Physics, vol. 99, no. 8, Article ID 083908, 10 pages, 2006. View at Google Scholar
  28. A. D. Arelaro, A. L. Brandl, E. Lima Jr. et al., “Interparticle interactions and surface contribution to the effective anisotropy in biocompatible iron oxide nanoparticles used for contrast agents,” Journal of Applied Physics, vol. 97, no. 10, Article ID 10J316, 3 pages, 2005. View at Publisher · View at Google Scholar