Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanotechnology
Volume 2009, Article ID 709748, 8 pages
http://dx.doi.org/10.1155/2009/709748
Research Article

Ultrahydrophobicity of Polydimethylsiloxanes-Based Multilayered Thin Films

1Department of Chemistry, Yili Normal University, Yili, Xinjiang 835000, China
2Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA
3Technical Institute for Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080, China

Received 23 August 2008; Accepted 11 November 2008

Academic Editor: Thomas Thundat

Copyright © 2009 Hongyan Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. W. Adamson, Physical Chemistry of Surfaces, Academic Press, New York, NY, USA, 1990.
  2. W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta, vol. 202, no. 1, pp. 1–8, 1997. View at Publisher · View at Google Scholar
  3. H. Y. Erbil, A. L. Demirel, Y. Avci, and O. Mert, “Transformation of a simple plastic into a superhydrophobic surface,” Science, vol. 299, no. 5611, pp. 1377–1380, 2003. View at Publisher · View at Google Scholar
  4. K. K. S. Lau, J. Bico, K. B. K. Teo et al., “Superhydrophobic carbon nanotube forests,” Nano Letters, vol. 3, no. 12, pp. 1701–1705, 2003. View at Publisher · View at Google Scholar
  5. D. Quéré, “Surface chemistry: Fakir droplets,” Nature Materials, vol. 1, no. 1, pp. 14–15, 2002. View at Publisher · View at Google Scholar
  6. Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto, “Effects of surface structure on the hydrophobicity and sliding behavior of water droplets,” Langmuir, vol. 18, no. 15, pp. 5818–5822, 2002. View at Publisher · View at Google Scholar
  7. Y. Zhu, C. Gao, T. He, X. Liu, and J. Shen, “Layer-by-layer assembly to modify poly(L-lactic acid) surface toward improving its cytocompatibility to human endothelial cells,” Biomacromolecules, vol. 4, no. 2, pp. 446–452, 2003. View at Publisher · View at Google Scholar
  8. L. Feng, Y. Song, J. Zhai et al., “Creation of a superhydrophobic surface from an amphiphilic polymer,” Angewandte Chemie International Edition, vol. 42, no. 7, pp. 800–802, 2003. View at Publisher · View at Google Scholar
  9. X. B. Wang, Y. Q. Liu, and D. B. Zhu, “Two- and three-dimensional alignment and patterning of carbon nanotubes,” Advanced Materials, vol. 14, no. 2, pp. 165–167, 2002. View at Publisher · View at Google Scholar
  10. F. Burmeister, C. Kohn, R. Kuebler, G. Kleer, B. Bläsi, and A. Gombert, “Applications for TiAlN- and TiO2-coatings with nanoscale surface topographies,” Surface and Coatings Technology, vol. 200, no. 5-6, pp. 1555–1559, 2005. View at Publisher · View at Google Scholar
  11. X.-T. Zhang, O. Sato, and A. Fujishima, “Water ultrarepellency induced by nanocolumnar ZnO surface,” Langmuir, vol. 20, no. 14, pp. 6065–6067, 2004. View at Publisher · View at Google Scholar
  12. S. Wang, L. Feng, and L. Jiang, “One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces,” Advanced Materials, vol. 18, no. 6, pp. 767–770, 2006. View at Publisher · View at Google Scholar
  13. J. Zhang, W. Huang, and Y. Han, “Wettability of zinc oxide surfaces with controllable structures,” Langmuir, vol. 22, no. 7, pp. 2946–2950, 2006. View at Publisher · View at Google Scholar
  14. P. Uhlmann, L. Ionov, N. Houbenov et al., “Surface functionalization by smart coatings: stimuli-responsive binary polymer brushes,” Progress in Organic Coatings, vol. 55, no. 2, pp. 168–174, 2006. View at Publisher · View at Google Scholar
  15. U. Mock, R. Förster, W. Menz, and J. Rühe, “Towards ultrahydrophobic surfaces: a biomimetic approach,” Journal of Physics: Condensed Matter, vol. 17, no. 9, pp. S639–S648, 2005. View at Publisher · View at Google Scholar
  16. A. Duparré, M. Flemming, J. Steinert, and K. Reihs, “Optical coatings with enhanced roughness for ultrahydrophobic, low-scatter applications,” Applied Optics, vol. 41, no. 16, pp. 3294–3298, 2002. View at Publisher · View at Google Scholar
  17. M. Thieme, R. Frenzel, S. Schmidt et al., “Generation of ultrahydrophobic properties of aluminium—a first step to self-cleaning transparently coated metal surfaces,” Advanced Engineering Materials, vol. 3, no. 9, pp. 691–695, 2001. View at Publisher · View at Google Scholar
  18. M. Nicolas, F. Guittard, and S. Géribaldi, “Stable superhydrophobic and lipophobic conjugated polymers films,” Langmuir, vol. 22, no. 7, pp. 3081–3088, 2006. View at Publisher · View at Google Scholar
  19. J. D. Jeyaprakash, S. Samuel, and J. Rühe, “A facile photochemical surface modification technique for the generation of microstructured fluorinated surfaces,” Langmuir, vol. 20, no. 23, pp. 10080–10085, 2004. View at Publisher · View at Google Scholar
  20. J. Fresnais, L. Benyahia, J. P. Chapel, and F. Poncin-Epaillard, “Polyethylene ultrahydrophobic surface: synthesis and original properties,” The European Physical Journal Applied Physics, vol. 26, no. 3, pp. 209–214, 2004. View at Publisher · View at Google Scholar
  21. T. Onda, S. Shibuichi, N. Satoh, and K. Tsujii, “Super-water-repellent fractal surfaces,” Langmuir, vol. 12, no. 9, pp. 2125–2127, 1996. View at Publisher · View at Google Scholar
  22. G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annual Review of Biomedical Engineering, vol. 3, pp. 335–373, 2001. View at Publisher · View at Google Scholar
  23. L. Hoipkemeier-Wilson, J. F. Schumacher, M. L. Carman et al., “Antifouling potential of lubricious, micro-engineered, PDMS elastomers against zoospores of the green fouling alga Ulva (Enteromorpha),” Biofouling, vol. 20, no. 1, pp. 53–63, 2004. View at Publisher · View at Google Scholar
  24. G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science, vol. 227, no. 5330, pp. 1232–1237, 1997. View at Publisher · View at Google Scholar
  25. R. M. Jisr, H. H. Rmaile, and J. B. Schlenoff, “Hydrophobic and ultrahydrophobic multilayer thin films from perfluorinated polyelectrolytes,” Angewandte Chemie International Edition, vol. 44, no. 5, pp. 782–785, 2005. View at Publisher · View at Google Scholar
  26. L. Zhai, F. C. Cebeci, R. E. Cohen, and M. F. Rubner, “Stable superhydrophobic coatings from polyelectrolyte multilayers,” Nano Letters, vol. 4, no. 7, pp. 1349–1353, 2004. View at Publisher · View at Google Scholar
  27. X. Zhang, F. Shi, X. Yu et al., “Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface,” Journal of the American Chemical Society, vol. 126, no. 10, pp. 3064–3065, 2004. View at Publisher · View at Google Scholar
  28. J. Wang, J. Hu, Y. Wen, Y. Song, and L. Jiang, “Hydrogen-bonding-driven wettability change of colloidal crystal films: from superhydrophobicity to superhydrophilicity,” Chemistry of Materials, vol. 18, no. 21, pp. 4984–4986, 2006. View at Publisher · View at Google Scholar
  29. C. D. Bain, E. B. Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” Journal of the American Chemical Society, vol. 111, no. 1, pp. 321–335, 1989. View at Publisher · View at Google Scholar
  30. I. Haller, “Covalently attached organic monolayers on semiconductor surfaces,” Journal of the American Chemical Society, vol. 100, no. 26, pp. 8050–8055, 1978. View at Publisher · View at Google Scholar
  31. Y. Lvov, K. Ariga, I. Ichinose, and T. Kunitake, “Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption,” Journal of the American Chemical Society, vol. 117, no. 22, pp. 6117–6123, 1995. View at Publisher · View at Google Scholar
  32. A. M. Piwowar and J. A. Gardella Jr., “Reflection-absorption Fourier transform infrared spectroscopic study of transferred films of poly(dimethylsiloxane) using the Langmuir-Blodgett technique,” Macromolecules, vol. 41, no. 7, pp. 2616–2619, 2008. View at Publisher · View at Google Scholar
  33. D. Öner and T. J. McCarthy, “Ultrahydrophobic surfaces. Effects of topography length scales on wettability,” Langmuir, vol. 16, no. 20, pp. 7777–7782, 2000. View at Publisher · View at Google Scholar
  34. S. T. Dubas and J. B. Schlenoff, “Factors controlling the growth of polyelectrolyte multilayers,” Macromolecules, vol. 32, no. 24, pp. 8153–8160, 1999. View at Publisher · View at Google Scholar